Welcome to the IKCEST

Information Sciences | Vol.382–383, Issue.0 | | Pages 234-253

Information Sciences

Adaptive multi-attribute diversity for recommender systems

Jessica Rosati   Tommaso Di Noia   Paolo Tomeo   Eugenio Di Sciascio  
Abstract

Providing very accurate recommendations to end users has been nowadays recognized to be just one of the tasks an effective recommender system should accomplish. While predicting relevant suggestions, attention needs to be paid also to their diversification in order to avoid monotony in the returned list of recommendations. In this paper we focus on modeling user propensity toward selecting diverse items, where diversity is computed by means of content-based item attributes. We then exploit such modeling to present a novel approach to re-arrange the list of Top-N items predicted by a recommendation algorithm, with the aim of fostering diversity in the final ranking. An extensive experimental evaluation proves the effectiveness of the proposed approach as well as its ability to improve also novelty and catalog coverage values.

Original Text (This is the original text for your reference.)

Adaptive multi-attribute diversity for recommender systems

Providing very accurate recommendations to end users has been nowadays recognized to be just one of the tasks an effective recommender system should accomplish. While predicting relevant suggestions, attention needs to be paid also to their diversification in order to avoid monotony in the returned list of recommendations. In this paper we focus on modeling user propensity toward selecting diverse items, where diversity is computed by means of content-based item attributes. We then exploit such modeling to present a novel approach to re-arrange the list of Top-N items predicted by a recommendation algorithm, with the aim of fostering diversity in the final ranking. An extensive experimental evaluation proves the effectiveness of the proposed approach as well as its ability to improve also novelty and catalog coverage values.

+More

Cite this article
APA

APA

MLA

Chicago

Jessica Rosati,Tommaso Di Noia, Paolo Tomeo, Eugenio Di Sciascio,.Adaptive multi-attribute diversity for recommender systems. 382–383 (0),234-253.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel