Welcome to the IKCEST

IEEE Transactions on Image Processing | Vol.26, Issue.2 | | Pages 711-723

IEEE Transactions on Image Processing

Structure-From-Motion in Spherical Video Using the von Mises-Fisher Distribution

Hao Guan  
Abstract

In this paper, we present a complete pipeline for computing structure-from-motion from the sequences of spherical images. We revisit problems from multiview geometry in the context of spherical images. In particular, we propose methods suited to spherical camera geometry for the spherical-n-point problem (estimating camera pose for a spherical image) and calibrated spherical reconstruction (estimating the position of a 3-D point from multiple spherical images). We introduce a new probabilistic interpretation of spherical structure-from-motion which uses the von Mises-Fisher distribution to model noise in spherical feature point positions. This model provides an alternate objective function that we use in bundle adjustment. We evaluate our methods quantitatively and qualitatively on both synthetic and real world data and show that our methods developed for spherical images outperform straightforward adaptations of methods developed for perspective images. As an application of our method, we use the structure-from-motion output to stabilise the viewing direction in fully spherical video.

Original Text (This is the original text for your reference.)

Structure-From-Motion in Spherical Video Using the von Mises-Fisher Distribution

In this paper, we present a complete pipeline for computing structure-from-motion from the sequences of spherical images. We revisit problems from multiview geometry in the context of spherical images. In particular, we propose methods suited to spherical camera geometry for the spherical-n-point problem (estimating camera pose for a spherical image) and calibrated spherical reconstruction (estimating the position of a 3-D point from multiple spherical images). We introduce a new probabilistic interpretation of spherical structure-from-motion which uses the von Mises-Fisher distribution to model noise in spherical feature point positions. This model provides an alternate objective function that we use in bundle adjustment. We evaluate our methods quantitatively and qualitatively on both synthetic and real world data and show that our methods developed for spherical images outperform straightforward adaptations of methods developed for perspective images. As an application of our method, we use the structure-from-motion output to stabilise the viewing direction in fully spherical video.

+More

Cite this article
APA

APA

MLA

Chicago

Hao Guan,.Structure-From-Motion in Spherical Video Using the von Mises-Fisher Distribution. 26 (2),711-723.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel