Cement and Concrete Research | Vol.91, Issue.0 | | Pages 61-72
Can Electrical Resistance Tomography be used for imaging unsaturated moisture flow in cement-based materials with discrete cracks?
Previously, it has been shown that Electrical Resistance Tomography (ERT) can be used for monitoring moisture flow in undamaged cement-based materials. In this work, we investigate whether ERT could be used for imaging three-dimensional (3D) unsaturated moisture flow in cement-based materials that contain discrete cracks. Novel computational methods based on the so-called absolute imaging framework are developed and used in ERT image reconstructions, aiming at a better tolerance of the reconstructed images with respect to the complexity of the conductivity distribution in cracked material. ERT is first tested using specimens with physically simulated cracks of known geometries, and corroborated with numerical simulations of unsaturated moisture flow. Next, specimens with loading-induced cracks are imaged; here, ERT reconstructions are evaluated qualitatively based on visual observations and known properties of unsaturated moisture flow. Results indicate that ERT is a viable method of visualizing 3D unsaturated moisture flow in cement-based materials with discrete cracks.
Original Text (This is the original text for your reference.)
Can Electrical Resistance Tomography be used for imaging unsaturated moisture flow in cement-based materials with discrete cracks?
Previously, it has been shown that Electrical Resistance Tomography (ERT) can be used for monitoring moisture flow in undamaged cement-based materials. In this work, we investigate whether ERT could be used for imaging three-dimensional (3D) unsaturated moisture flow in cement-based materials that contain discrete cracks. Novel computational methods based on the so-called absolute imaging framework are developed and used in ERT image reconstructions, aiming at a better tolerance of the reconstructed images with respect to the complexity of the conductivity distribution in cracked material. ERT is first tested using specimens with physically simulated cracks of known geometries, and corroborated with numerical simulations of unsaturated moisture flow. Next, specimens with loading-induced cracks are imaged; here, ERT reconstructions are evaluated qualitatively based on visual observations and known properties of unsaturated moisture flow. Results indicate that ERT is a viable method of visualizing 3D unsaturated moisture flow in cement-based materials with discrete cracks.
+More
loadinginduced cracks computational methods electrical resistance tomography ert known properties of unsaturated moisture visual observations known geometries complexity of the conductivity distribution in cracked ert image reconstructions imaging threedimensional 3d unsaturated moisture flow in cementbased socalled absolute imaging framework
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: