Welcome to the IKCEST

PLoS ONE | Vol.14, Issue.11 | | Pages

PLoS ONE

Discovery of actionable genetic alterations with targeted panel sequencing in children with relapsed or refractory solid tumors.

Ji Won Lee,Nayoung K D Kim,Soo Hyun Lee,Hee Won Cho,Youngeun Ma,Hee Young Ju,Keon Hee Yoo,Ki Woong Sung,Hong Hoe Koo,Woong-Yang Park  
Abstract

Advances in genomic technologies and the development of targeted therapeutics are making the use of precision medicine increasingly possible. In this study, we explored whether precision medicine can be applied for the management of refractory/relapsed pediatric solid tumors by discovering actionable alterations using targeted panel sequencing. Samples of refractory/relapsed pediatric solid tumors were tested using a targeted sequencing panel covering the exonic DNA sequences of 381 cancer genes and introns across 22 genes to detect clinically significant genomic aberrations in tumors. The molecular targets were tiered from 1 to 5 based on the presence of actionable genetic alterations, strength of supporting evidence, and drug availability in the Republic of Korea. From January 2016 to October 2018, 55 patients were enrolled. The median time from tissue acquisition to drug selection was 29 d (range 14-39), and tumor profiling was successful in 53 (96.4%) patients. A total of 27 actionable alterations in tiers 1-4 were detected in 20 patients (36.4%), and the majority of actionable alterations were copy number variations. The tiers of molecular alterations were tier 1 (clinical evidence) in 4 variants, tier 2 (preclinical evidence) in 8 variants, tier 3 (consensus opinion) in 2 variants, and tier 4 (actionable variants with a drug that is available in other countries but not in the Republic of Korea) in 9 variants. In one patient with relapsed neuroblastoma with ALK F1174L mutation and ALK amplification, lorlatinib was used in a compassionate use program, and it showed some efficacy. In conclusion, using a targeted sequencing panel to discover actionable alterations in relapsed/refractory pediatric solid tumors was practical and feasible.

Original Text (This is the original text for your reference.)

Discovery of actionable genetic alterations with targeted panel sequencing in children with relapsed or refractory solid tumors.

Advances in genomic technologies and the development of targeted therapeutics are making the use of precision medicine increasingly possible. In this study, we explored whether precision medicine can be applied for the management of refractory/relapsed pediatric solid tumors by discovering actionable alterations using targeted panel sequencing. Samples of refractory/relapsed pediatric solid tumors were tested using a targeted sequencing panel covering the exonic DNA sequences of 381 cancer genes and introns across 22 genes to detect clinically significant genomic aberrations in tumors. The molecular targets were tiered from 1 to 5 based on the presence of actionable genetic alterations, strength of supporting evidence, and drug availability in the Republic of Korea. From January 2016 to October 2018, 55 patients were enrolled. The median time from tissue acquisition to drug selection was 29 d (range 14-39), and tumor profiling was successful in 53 (96.4%) patients. A total of 27 actionable alterations in tiers 1-4 were detected in 20 patients (36.4%), and the majority of actionable alterations were copy number variations. The tiers of molecular alterations were tier 1 (clinical evidence) in 4 variants, tier 2 (preclinical evidence) in 8 variants, tier 3 (consensus opinion) in 2 variants, and tier 4 (actionable variants with a drug that is available in other countries but not in the Republic of Korea) in 9 variants. In one patient with relapsed neuroblastoma with ALK F1174L mutation and ALK amplification, lorlatinib was used in a compassionate use program, and it showed some efficacy. In conclusion, using a targeted sequencing panel to discover actionable alterations in relapsed/refractory pediatric solid tumors was practical and feasible.

+More

Cite this article
APA

APA

MLA

Chicago

Ji Won Lee,Nayoung K D Kim,Soo Hyun Lee,Hee Won Cho,Youngeun Ma,Hee Young Ju,Keon Hee Yoo,Ki Woong Sung,Hong Hoe Koo,Woong-Yang Park,.Discovery of actionable genetic alterations with targeted panel sequencing in children with relapsed or refractory solid tumors.. 14 (11),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel