Welcome to the IKCEST

Mathematical Problems in Engineering | Vol.2019, Issue. | | Pages

Mathematical Problems in Engineering

Modified Antipredatory Particle Swarm Optimization for Dynamic Economic Dispatch with Wind Power

Kai Chen,Li Han,Shuhuan Wang,Junjie Lu,Liping Shi  
Abstract

A modified antipredatory particle swarm optimization (MAPSO) algorithm with evasive adjustment behavior is proposed to solve the dynamic economic dispatch problem of wind power. The algorithm adds the social avoidance inertia weight to the conventional antipredatory particle swarm optimization (APSO) speed update formula. The size of inertia weight is determined by the distance between the global worst particle and other particles. After normalizing the distance, the inertia weight is controlled within the ideal range by using the characteristics of sigmoid function and linear decreasing method, which improves the ability of particles to avoid the worst solution. Then, according to the characteristics of the acceleration coefficient which can adjust the local and global searching ability of particles, acceleration coefficients of nonlinear change strategy is proposed to improve the searching ability of the algorithm. Finally, the proposed algorithm is applied to several benchmark functions and power grid system models, and the results are compared with those reported using other algorithms, which prove the effectiveness and superiority of the proposed algorithm.

Original Text (This is the original text for your reference.)

Modified Antipredatory Particle Swarm Optimization for Dynamic Economic Dispatch with Wind Power

A modified antipredatory particle swarm optimization (MAPSO) algorithm with evasive adjustment behavior is proposed to solve the dynamic economic dispatch problem of wind power. The algorithm adds the social avoidance inertia weight to the conventional antipredatory particle swarm optimization (APSO) speed update formula. The size of inertia weight is determined by the distance between the global worst particle and other particles. After normalizing the distance, the inertia weight is controlled within the ideal range by using the characteristics of sigmoid function and linear decreasing method, which improves the ability of particles to avoid the worst solution. Then, according to the characteristics of the acceleration coefficient which can adjust the local and global searching ability of particles, acceleration coefficients of nonlinear change strategy is proposed to improve the searching ability of the algorithm. Finally, the proposed algorithm is applied to several benchmark functions and power grid system models, and the results are compared with those reported using other algorithms, which prove the effectiveness and superiority of the proposed algorithm.

+More

Cite this article
APA

APA

MLA

Chicago

Kai Chen,Li Han,Shuhuan Wang,Junjie Lu,Liping Shi,.Modified Antipredatory Particle Swarm Optimization for Dynamic Economic Dispatch with Wind Power. 2019 (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel