Welcome to the IKCEST

Nanomaterials | Vol.9, Issue.7 | | Pages

Nanomaterials

Acetic-Acid Plasma-Polymerization on Polymeric Substrates for Biomedical Application

Shu-Chuan Liao,Ko-Shao Chen,Jui-Lung Chien,Su-Chen Chen,Win-Li Lin  
Abstract

Cold plasma is an emerging technology offering many potential applications for regenerative medicine or tissue engineering. This study focused on the characterization of the carboxylic acid functional groups deposited on polymeric substrates using a plasma polymerization process with an acetic acid precursor. The acetic acid precursor contains oxygen and hydrocarbon that, when introduced to a plasma state, forms the polylactide-like film on the substrates. In this study, polymeric substrates were modified by depositing acetic acid plasma film on the surface to improve hydrophilic quality and biocompatibility. The experimental results that of electron spectroscopy for chemical analysis (ESCA) to show for acetic acid film, three peaks corresponding to the C−C group (285.0 eV), C−O group (286.6 eV), and C=O group (288.7 eV) were observed. The resulting of those indicated that appropriate acetic acid plasma treatment could increase the polar components on the surface of substrates to improve the hydrophilicity. In addition, in vitro cell culture studies showed that the embryonic stem (ES) cell adhesion on the acetic acid plasma-treated polymeric substrates is better than the untreated. Such acetic acid film performance makes it become a promising candidate as the surface coating layer on polymeric substrates for biomedical application.

Original Text (This is the original text for your reference.)

Acetic-Acid Plasma-Polymerization on Polymeric Substrates for Biomedical Application

Cold plasma is an emerging technology offering many potential applications for regenerative medicine or tissue engineering. This study focused on the characterization of the carboxylic acid functional groups deposited on polymeric substrates using a plasma polymerization process with an acetic acid precursor. The acetic acid precursor contains oxygen and hydrocarbon that, when introduced to a plasma state, forms the polylactide-like film on the substrates. In this study, polymeric substrates were modified by depositing acetic acid plasma film on the surface to improve hydrophilic quality and biocompatibility. The experimental results that of electron spectroscopy for chemical analysis (ESCA) to show for acetic acid film, three peaks corresponding to the C−C group (285.0 eV), C−O group (286.6 eV), and C=O group (288.7 eV) were observed. The resulting of those indicated that appropriate acetic acid plasma treatment could increase the polar components on the surface of substrates to improve the hydrophilicity. In addition, in vitro cell culture studies showed that the embryonic stem (ES) cell adhesion on the acetic acid plasma-treated polymeric substrates is better than the untreated. Such acetic acid film performance makes it become a promising candidate as the surface coating layer on polymeric substrates for biomedical application.

+More

Cite this article
APA

APA

MLA

Chicago

Shu-Chuan Liao,Ko-Shao Chen,Jui-Lung Chien,Su-Chen Chen,Win-Li Lin,.Acetic-Acid Plasma-Polymerization on Polymeric Substrates for Biomedical Application. 9 (7),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel