Welcome to the IKCEST

BIOLOGICAL SCIENCES | Vol.2016, Issue.11 | | Pages

BIOLOGICAL SCIENCES

Synthetic recording and in situ readout of lineage information in single cells

James M. Linton   Kirsten L. Frieda   Sahand Hormoz   Ke-Huan K. Chow   Mark W. Budde   Long Cai   Joonhyuk Choi   Zakary S. Singer   Michael B. Elowitz  
Abstract

Reconstructing the lineage relationships and dynamic event histories of individual cells within their native spatial context is a long-standing challenge in biology. Many biological processes of interest occur in optically opaque or physically inaccessible contexts, necessitating approaches other than direct imaging. Here, we describe a new synthetic system that enables cells to record lineage information and event histories in the genome in a format that can be subsequently read out in single cells in situ. This system, termed Memory by Engineered Mutagenesis with Optical In situ Readout (MEMOIR), is based on a set of barcoded recording elements termed scratchpads. The state of a given scratchpad can be irreversibly altered by Cas9-based targeted mutagenesis, and read out in single cells through multiplexed single-molecule RNA fluorescence hybridization (smFISH). To demonstrate a proof of principle of MEMOIR, we engineered mouse embryonic stem (ES) cells to contain multiple scratchpads and other recording components. In these cells, scratchpads were altered in a progressive and stochastic fashion as cells proliferated. Analysis of the final states of scratchpads in single cells in situ enabled reconstruction of the lineage trees of cell colonies. Combining analysis of endogenous gene expression with lineage reconstruction in the same cells further allowed inference of the dynamic rates at which ES cells switch between two gene expression states. Finally, using simulations, we showed how parallel MEMOIR systems operating in the same cell can enable recording and readout of dynamic cellular event histories. MEMOIR thus provides a versatile platform for information recording and in situ, single cell readout across diverse biological systems.

Original Text (This is the original text for your reference.)

Synthetic recording and in situ readout of lineage information in single cells

Reconstructing the lineage relationships and dynamic event histories of individual cells within their native spatial context is a long-standing challenge in biology. Many biological processes of interest occur in optically opaque or physically inaccessible contexts, necessitating approaches other than direct imaging. Here, we describe a new synthetic system that enables cells to record lineage information and event histories in the genome in a format that can be subsequently read out in single cells in situ. This system, termed Memory by Engineered Mutagenesis with Optical In situ Readout (MEMOIR), is based on a set of barcoded recording elements termed scratchpads. The state of a given scratchpad can be irreversibly altered by Cas9-based targeted mutagenesis, and read out in single cells through multiplexed single-molecule RNA fluorescence hybridization (smFISH). To demonstrate a proof of principle of MEMOIR, we engineered mouse embryonic stem (ES) cells to contain multiple scratchpads and other recording components. In these cells, scratchpads were altered in a progressive and stochastic fashion as cells proliferated. Analysis of the final states of scratchpads in single cells in situ enabled reconstruction of the lineage trees of cell colonies. Combining analysis of endogenous gene expression with lineage reconstruction in the same cells further allowed inference of the dynamic rates at which ES cells switch between two gene expression states. Finally, using simulations, we showed how parallel MEMOIR systems operating in the same cell can enable recording and readout of dynamic cellular event histories. MEMOIR thus provides a versatile platform for information recording and in situ, single cell readout across diverse biological systems.

+More

Cite this article
APA

APA

MLA

Chicago

James M. Linton,Kirsten L. Frieda,Sahand Hormoz,Ke-Huan K. Chow,Mark W. Budde,Long Cai,Joonhyuk Choi,Zakary S. Singer,Michael B. Elowitz,.Synthetic recording and in situ readout of lineage information in single cells. 2016 (11),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel