Welcome to the IKCEST

Advances in Mechanical Engineering | Vol.10, Issue. | | Pages

Advances in Mechanical Engineering

Adaptive recurrent neural network motion control for observation class remotely operated vehicle manipulator system with modeling uncertainty

Hai Huang,Jiyong Li,Guocheng Zhang,Qirong Tang,Lei Wan  
Abstract

Precise motion control of remotely operated vehicles plays an important role in a great number of submarine missions. However, the high-performance operations are difficult to realize due to the uncertainty in system modeling with self-disturbance. On the basis of the multibody system dynamics, self-disturbances from the tether and manipulator have been systematically analyzed in order to transform them into observed forces. A novel S surface–based adaptive recurrent wavelet neural network control system has been proposed on the nonlinear control of underwater vehicles, with its recurrent wavelet neural network structure designed for the approximation of the uncertain dynamics. Moreover, a robust function has been proposed to improve system robustness and convergence. The comparison shows that the remotely operated vehicle operation performance including the three-dimensional path following and vehicle-manipulator coordinate control has been greatly improved.

Original Text (This is the original text for your reference.)

Adaptive recurrent neural network motion control for observation class remotely operated vehicle manipulator system with modeling uncertainty

Precise motion control of remotely operated vehicles plays an important role in a great number of submarine missions. However, the high-performance operations are difficult to realize due to the uncertainty in system modeling with self-disturbance. On the basis of the multibody system dynamics, self-disturbances from the tether and manipulator have been systematically analyzed in order to transform them into observed forces. A novel S surface–based adaptive recurrent wavelet neural network control system has been proposed on the nonlinear control of underwater vehicles, with its recurrent wavelet neural network structure designed for the approximation of the uncertain dynamics. Moreover, a robust function has been proposed to improve system robustness and convergence. The comparison shows that the remotely operated vehicle operation performance including the three-dimensional path following and vehicle-manipulator coordinate control has been greatly improved.

+More

Cite this article
APA

APA

MLA

Chicago

Hai Huang,Jiyong Li,Guocheng Zhang,Qirong Tang,Lei Wan,.Adaptive recurrent neural network motion control for observation class remotely operated vehicle manipulator system with modeling uncertainty. 10 (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel