Welcome to the IKCEST

Frontiers in Applied Mathematics and Statistics | Vol.4, Issue. | | Pages

Frontiers in Applied Mathematics and Statistics

Curvilinear Moderation—A More Complete Examination of Moderation Effects in Behavioral Sciences

Johnson Ching-Hong Li  
Abstract

In behavioral sciences, researchers often examine whether any linear moderations exist in their studies. That is, they evaluate the extent (i.e., magnitude, direction) to which a linear effect of a predictor X (e.g., cognitive ability) on a criterion Y (e.g., performance) may differ across the levels of a moderator M (e.g., gender). In that case, researchers often run a liner regression analysis for examining this moderation (e.g., gender by ability). Despite its popularity, linear moderation is insufficient for researchers to understand complex human phenomena. Curvilinear moderation is a data-analytic technique that identifies whether a predictor X and a criterion Y form a non-linear relationship, and how this relationship may differ across the levels of a moderator M. I describe eight common types of curvilinear moderation that are typically not addressed in the literature and propose an algorithm for detecting them. Using a Monte Carlo simulation, I show that the conventional linear regression analysis inappropriately and mistakenly flags a significant main effect of the moderator (M), but this effect is appropriately signaled as a significant curvilinear moderation effect (i.e., X by M) using my proposed algorithms. Misidentification of moderation effects poses serious threats to the accuracy of theory and model testing. Researchers can use curvilinear moderation analysis to avoid this problem and correctly detect curvilinear moderation in their studies.

Original Text (This is the original text for your reference.)

Curvilinear Moderation—A More Complete Examination of Moderation Effects in Behavioral Sciences

In behavioral sciences, researchers often examine whether any linear moderations exist in their studies. That is, they evaluate the extent (i.e., magnitude, direction) to which a linear effect of a predictor X (e.g., cognitive ability) on a criterion Y (e.g., performance) may differ across the levels of a moderator M (e.g., gender). In that case, researchers often run a liner regression analysis for examining this moderation (e.g., gender by ability). Despite its popularity, linear moderation is insufficient for researchers to understand complex human phenomena. Curvilinear moderation is a data-analytic technique that identifies whether a predictor X and a criterion Y form a non-linear relationship, and how this relationship may differ across the levels of a moderator M. I describe eight common types of curvilinear moderation that are typically not addressed in the literature and propose an algorithm for detecting them. Using a Monte Carlo simulation, I show that the conventional linear regression analysis inappropriately and mistakenly flags a significant main effect of the moderator (M), but this effect is appropriately signaled as a significant curvilinear moderation effect (i.e., X by M) using my proposed algorithms. Misidentification of moderation effects poses serious threats to the accuracy of theory and model testing. Researchers can use curvilinear moderation analysis to avoid this problem and correctly detect curvilinear moderation in their studies.

+More

Cite this article
APA

APA

MLA

Chicago

Johnson Ching-Hong Li,.Curvilinear Moderation—A More Complete Examination of Moderation Effects in Behavioral Sciences. 4 (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel