Welcome to the IKCEST

International Journal of Environmental Research and Public Health | Vol.16, Issue.10 | | Pages

International Journal of Environmental Research and Public Health

Response of Soil Microbes to Vegetation Restoration in Coal Mining Subsidence Areas at Huaibei Coal Mine, China

Shiyong Sun,Hui Sun,Deshun Zhang,Jianfeng Zhang,Zeyu Cai,Guanghua Qin,Yumin Song  
Abstract

Vegetation restoration is an available way to ameliorate degraded lands. In order to study the response of soil microbes to vegetation restoration in coal mining subsidence areas, the composition and distribution of soil microbes were discussed through three plots: unsubsided area (CA), new subsided area (NSA), and old subsided area (OSA) with different vegetation restoration time in Huabei coal mine. Meanwhile, changes in soil catalase and urease activity were explored and the correlation between soil bacteria, fungi, and environmental factors was analysed. The results demonstrated that Nitrospira was the dominant bacteria in all areas sampled. Microorganisms in the 0–20 cm and 40–60 cm soil layers of OSA had the highest Simpson index, whereas the index in NSA was lowest (at all soil depths). The catalase activity in NSA was significantly higher than that in CA, and there was no significant difference in catalase activity with soil depth, while the urease activity declined gradually with increasing soil depth. The urease activity in the 20–60 cm soil layer of NSA and OSA was significantly higher than that of CA. Furthermore, the distribution of bacteria was mainly affected by soil organic matter, available potassium, available phosphorus, and alkali-hydrolyzable nitrogen, whereas pH and catalase activity mainly affected fungal distribution. These results implied that soil catalase activity in NSA and urease activity in the 20–40 cm soil layer of NSA and OSA were significantly enhanced after vegetation restoration, and that long-term plant restoration could improve soil fertility and soil microbial community diversity in coal mining areas.

Original Text (This is the original text for your reference.)

Response of Soil Microbes to Vegetation Restoration in Coal Mining Subsidence Areas at Huaibei Coal Mine, China

Vegetation restoration is an available way to ameliorate degraded lands. In order to study the response of soil microbes to vegetation restoration in coal mining subsidence areas, the composition and distribution of soil microbes were discussed through three plots: unsubsided area (CA), new subsided area (NSA), and old subsided area (OSA) with different vegetation restoration time in Huabei coal mine. Meanwhile, changes in soil catalase and urease activity were explored and the correlation between soil bacteria, fungi, and environmental factors was analysed. The results demonstrated that Nitrospira was the dominant bacteria in all areas sampled. Microorganisms in the 0–20 cm and 40–60 cm soil layers of OSA had the highest Simpson index, whereas the index in NSA was lowest (at all soil depths). The catalase activity in NSA was significantly higher than that in CA, and there was no significant difference in catalase activity with soil depth, while the urease activity declined gradually with increasing soil depth. The urease activity in the 20–60 cm soil layer of NSA and OSA was significantly higher than that of CA. Furthermore, the distribution of bacteria was mainly affected by soil organic matter, available potassium, available phosphorus, and alkali-hydrolyzable nitrogen, whereas pH and catalase activity mainly affected fungal distribution. These results implied that soil catalase activity in NSA and urease activity in the 20–40 cm soil layer of NSA and OSA were significantly enhanced after vegetation restoration, and that long-term plant restoration could improve soil fertility and soil microbial community diversity in coal mining areas.

+More

Cite this article
APA

APA

MLA

Chicago

Shiyong Sun,Hui Sun,Deshun Zhang,Jianfeng Zhang,Zeyu Cai,Guanghua Qin,Yumin Song,.Response of Soil Microbes to Vegetation Restoration in Coal Mining Subsidence Areas at Huaibei Coal Mine, China. 16 (10),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel