Welcome to the IKCEST

Plant Methods | Vol.14, Issue.1 | | Pages

Plant Methods

The use of plant models in deep learning: an application to leaf counting in rosette plants

Jordan Ubbens,Mikolaj Cieslak,Przemyslaw Prusinkiewicz,Ian Stavness  
Abstract

Abstract Deep learning presents many opportunities for image-based plant phenotyping. Here we consider the capability of deep convolutional neural networks to perform the leaf counting task. Deep learning techniques typically require large and diverse datasets to learn generalizable models without providing a priori an engineered algorithm for performing the task. This requirement is challenging, however, for applications in the plant phenotyping field, where available datasets are often small and the costs associated with generating new data are high. In this work we propose a new method for augmenting plant phenotyping datasets using rendered images of synthetic plants. We demonstrate that the use of high-quality 3D synthetic plants to augment a dataset can improve performance on the leaf counting task. We also show that the ability of the model to generate an arbitrary distribution of phenotypes mitigates the problem of dataset shift when training and testing on different datasets. Finally, we show that real and synthetic plants are significantly interchangeable when training a neural network on the leaf counting task.

Original Text (This is the original text for your reference.)

The use of plant models in deep learning: an application to leaf counting in rosette plants

Abstract Deep learning presents many opportunities for image-based plant phenotyping. Here we consider the capability of deep convolutional neural networks to perform the leaf counting task. Deep learning techniques typically require large and diverse datasets to learn generalizable models without providing a priori an engineered algorithm for performing the task. This requirement is challenging, however, for applications in the plant phenotyping field, where available datasets are often small and the costs associated with generating new data are high. In this work we propose a new method for augmenting plant phenotyping datasets using rendered images of synthetic plants. We demonstrate that the use of high-quality 3D synthetic plants to augment a dataset can improve performance on the leaf counting task. We also show that the ability of the model to generate an arbitrary distribution of phenotypes mitigates the problem of dataset shift when training and testing on different datasets. Finally, we show that real and synthetic plants are significantly interchangeable when training a neural network on the leaf counting task.

+More

Cite this article
APA

APA

MLA

Chicago

Jordan Ubbens,Mikolaj Cieslak,Przemyslaw Prusinkiewicz,Ian Stavness,.The use of plant models in deep learning: an application to leaf counting in rosette plants. 14 (1),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel