Welcome to the IKCEST

Sensors | Vol.18, Issue.12 | | Pages

Sensors

Comparison of Different Feature Sets for TLS Point Cloud Classification

Quan Li,Xiaojun Cheng  
Abstract

Point cloud classification is an essential requirement for effectively utilizing point cloud data acquired by Terrestrial laser scanning (TLS). Neighborhood selection, feature selection and extraction, and classification of points based on the respective features constitute the commonly used workflow of point cloud classification. Feature selection and extraction has been the focus of many studies, and the choice of different features has had a great impact on classification results. In previous studies, geometric features were widely used for TLS point cloud classification, and only a few studies investigated the potential of both intensity and color on classification using TLS point cloud. In this paper, the geometric features, color features, and intensity features were extracted based on a supervoxel neighborhood. In addition, the original intensity was also corrected for range effect, which is why the corrected intensity features were also extracted. The different combinations of these features were tested on four real-world data sets. Experimental results demonstrate that both color and intensity features can complement the geometric features to help improve the classification results. Furthermore, the combination of geometric features, color features, and corrected intensity features together achieves the highest accuracy in our test.

Original Text (This is the original text for your reference.)

Comparison of Different Feature Sets for TLS Point Cloud Classification

Point cloud classification is an essential requirement for effectively utilizing point cloud data acquired by Terrestrial laser scanning (TLS). Neighborhood selection, feature selection and extraction, and classification of points based on the respective features constitute the commonly used workflow of point cloud classification. Feature selection and extraction has been the focus of many studies, and the choice of different features has had a great impact on classification results. In previous studies, geometric features were widely used for TLS point cloud classification, and only a few studies investigated the potential of both intensity and color on classification using TLS point cloud. In this paper, the geometric features, color features, and intensity features were extracted based on a supervoxel neighborhood. In addition, the original intensity was also corrected for range effect, which is why the corrected intensity features were also extracted. The different combinations of these features were tested on four real-world data sets. Experimental results demonstrate that both color and intensity features can complement the geometric features to help improve the classification results. Furthermore, the combination of geometric features, color features, and corrected intensity features together achieves the highest accuracy in our test.

+More

Cite this article
APA

APA

MLA

Chicago

Quan Li,Xiaojun Cheng,.Comparison of Different Feature Sets for TLS Point Cloud Classification. 18 (12),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel