Welcome to the IKCEST

Sensors | Vol.18, Issue.4 | | Pages

Sensors

QuantifyMe: An Open-Source Automated Single-Case Experimental Design Platform

Sara Taylor,Akane Sano,Craig Ferguson,Akshay Mohan,Rosalind W. Picard  
Abstract

Smartphones and wearable sensors have enabled unprecedented data collection, with many products now providing feedback to users about recommended step counts or sleep durations. However, these recommendations do not provide personalized insights that have been shown to be best suited for a specific individual. A scientific way to find individualized recommendations and causal links is to conduct experiments using single-case experimental design; however, properly designed single-case experiments are not easy to conduct on oneself. We designed, developed, and evaluated a novel platform, QuantifyMe, for novice self-experimenters to conduct proper-methodology single-case self-experiments in an automated and scientific manner using their smartphones. We provide software for the platform that we used (available for free on GitHub), which provides the methodological elements to run many kinds of customized studies. In this work, we evaluate its use with four different kinds of personalized investigations, examining how variables such as sleep duration and regularity, activity, and leisure time affect personal happiness, stress, productivity, and sleep efficiency. We conducted a six-week pilot study (N = 13) to evaluate QuantifyMe. We describe the lessons learned developing the platform and recommendations for its improvement, as well as its potential for enabling personalized insights to be scientifically evaluated in many individuals, reducing the high administrative cost for advancing human health and wellbeing.

Original Text (This is the original text for your reference.)

QuantifyMe: An Open-Source Automated Single-Case Experimental Design Platform

Smartphones and wearable sensors have enabled unprecedented data collection, with many products now providing feedback to users about recommended step counts or sleep durations. However, these recommendations do not provide personalized insights that have been shown to be best suited for a specific individual. A scientific way to find individualized recommendations and causal links is to conduct experiments using single-case experimental design; however, properly designed single-case experiments are not easy to conduct on oneself. We designed, developed, and evaluated a novel platform, QuantifyMe, for novice self-experimenters to conduct proper-methodology single-case self-experiments in an automated and scientific manner using their smartphones. We provide software for the platform that we used (available for free on GitHub), which provides the methodological elements to run many kinds of customized studies. In this work, we evaluate its use with four different kinds of personalized investigations, examining how variables such as sleep duration and regularity, activity, and leisure time affect personal happiness, stress, productivity, and sleep efficiency. We conducted a six-week pilot study (N = 13) to evaluate QuantifyMe. We describe the lessons learned developing the platform and recommendations for its improvement, as well as its potential for enabling personalized insights to be scientifically evaluated in many individuals, reducing the high administrative cost for advancing human health and wellbeing.

+More

Cite this article
APA

APA

MLA

Chicago

Sara Taylor,Akane Sano,Craig Ferguson,Akshay Mohan,Rosalind W. Picard,.QuantifyMe: An Open-Source Automated Single-Case Experimental Design Platform. 18 (4),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel