Welcome to the IKCEST

Minerals | Vol.8, Issue.11 | | Pages

Minerals

Impulsive Supply of Volatile-Rich Magmas in the Shallow Plumbing System of Mt. Etna Volcano

Cristina Perinelli,Silvio Mollo,Mario Gaeta,Serena Pia De Cristofaro,Danilo Mauro Palladino,Piergiorgio Scarlato  
Abstract

Magma dynamics at Mt. Etna volcano are frequently recognized as the result of complex crystallization regimes that, at shallow crustal levels, unexpectedly change from H2O-undersaturated to H2O-saturated conditions, due to the impulsive and irregular arrival of volatile-rich magmas from mantle depths. On this basis, we have performed hydrous crystallization experiments for a quantitative understanding of the role of H2O in the differentiation of deep-seated trachybasaltic magmas at the key pressure of the Moho transition zone. For H2O = 2.1⁻3.2 wt %, the original trachybasaltic composition shifts towards phonotephritic magmas never erupted during the entire volcanic activity of Mt. Etna. Conversely, for H2O = 3.8⁻8.2 wt %, the obtained trachybasalts and basaltic trachyandesites reproduce most of the pre-historic and historic eruptions. The comparison with previous low pressure experimental data and natural compositions from Mt. Etna provides explanation for (1) the abundant release of H2O throughout the plumbing system of the volcano during impulsive ascent of deep-seated magmas; (2) the upward acceleration of magmas feeding gas-dominated, sustained explosive eruptions; (3) the physicochemical changes of gas-fluxed magmas ponding at shallow crustal levels; and (4) the huge gas emissions measured at the summit craters and flank vents which result in a persistent volcanic gas plume.

Original Text (This is the original text for your reference.)

Impulsive Supply of Volatile-Rich Magmas in the Shallow Plumbing System of Mt. Etna Volcano

Magma dynamics at Mt. Etna volcano are frequently recognized as the result of complex crystallization regimes that, at shallow crustal levels, unexpectedly change from H2O-undersaturated to H2O-saturated conditions, due to the impulsive and irregular arrival of volatile-rich magmas from mantle depths. On this basis, we have performed hydrous crystallization experiments for a quantitative understanding of the role of H2O in the differentiation of deep-seated trachybasaltic magmas at the key pressure of the Moho transition zone. For H2O = 2.1⁻3.2 wt %, the original trachybasaltic composition shifts towards phonotephritic magmas never erupted during the entire volcanic activity of Mt. Etna. Conversely, for H2O = 3.8⁻8.2 wt %, the obtained trachybasalts and basaltic trachyandesites reproduce most of the pre-historic and historic eruptions. The comparison with previous low pressure experimental data and natural compositions from Mt. Etna provides explanation for (1) the abundant release of H2O throughout the plumbing system of the volcano during impulsive ascent of deep-seated magmas; (2) the upward acceleration of magmas feeding gas-dominated, sustained explosive eruptions; (3) the physicochemical changes of gas-fluxed magmas ponding at shallow crustal levels; and (4) the huge gas emissions measured at the summit craters and flank vents which result in a persistent volcanic gas plume.

+More

Cite this article
APA

APA

MLA

Chicago

Cristina Perinelli,Silvio Mollo,Mario Gaeta,Serena Pia De Cristofaro,Danilo Mauro Palladino,Piergiorgio Scarlato,.Impulsive Supply of Volatile-Rich Magmas in the Shallow Plumbing System of Mt. Etna Volcano. 8 (11),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel