Welcome to the IKCEST

Energies | Vol.11, Issue.11 | | Pages

Energies

A Review and New Problems Discovery of Four Simple Decentralized Maximum Power Point Tracking Algorithms—Perturb and Observe, Incremental Conductance, Golden Section Search, and Newton’s Quadratic Interpolation

Victor Andrean,Pei Cheng Chang,Kuo Lung Lian  
Abstract

Maximum Power Point Tracking (MPPT) enables photovoltaic (PV) systems to extract as much solar energy as possible. Depending on which type of controller is used, PV systems can be classified as centralized MPPT (CMPPT) or decentralized MPPT (DMPPT). In substring-level systems, it is known that the energy yield of DMPPT can outweigh the power electronics cost. At the substring level, it is usually assumed that the PV curve exhibits a single peak, even under partial shading. Thus, the control algorithms for DMPPT are usually less complicated than those employed in CMPPT systems. This paper provides a comprehensive review of four simple DMPPT algorithms, which are perturb and observe (P&O), incremental conductance (INC), golden section search (GSS), and Newton’s quadratic interpolation (NQI). The comparison of these algorithms are done from the perspective of numerical analysis. Guidelines on how to set initial conditions and convergence criteria are thoroughly explained. This is of great interest to PV engineers when selecting algorithms for use in MPPT implementations. In addition, various problems that have never previously been identified before are highlighted and discussed. For instance, the problems of NQI trap is identified and methods on how to mitigate it are also discussed. All the algorithms are tested under various conditions including static, dynamic, and rapid changes of irradiance. Both simulation and experimental results indicate that P&O and INC are the best algorithms for DMPPT.

Original Text (This is the original text for your reference.)

A Review and New Problems Discovery of Four Simple Decentralized Maximum Power Point Tracking Algorithms—Perturb and Observe, Incremental Conductance, Golden Section Search, and Newton’s Quadratic Interpolation

Maximum Power Point Tracking (MPPT) enables photovoltaic (PV) systems to extract as much solar energy as possible. Depending on which type of controller is used, PV systems can be classified as centralized MPPT (CMPPT) or decentralized MPPT (DMPPT). In substring-level systems, it is known that the energy yield of DMPPT can outweigh the power electronics cost. At the substring level, it is usually assumed that the PV curve exhibits a single peak, even under partial shading. Thus, the control algorithms for DMPPT are usually less complicated than those employed in CMPPT systems. This paper provides a comprehensive review of four simple DMPPT algorithms, which are perturb and observe (P&O), incremental conductance (INC), golden section search (GSS), and Newton’s quadratic interpolation (NQI). The comparison of these algorithms are done from the perspective of numerical analysis. Guidelines on how to set initial conditions and convergence criteria are thoroughly explained. This is of great interest to PV engineers when selecting algorithms for use in MPPT implementations. In addition, various problems that have never previously been identified before are highlighted and discussed. For instance, the problems of NQI trap is identified and methods on how to mitigate it are also discussed. All the algorithms are tested under various conditions including static, dynamic, and rapid changes of irradiance. Both simulation and experimental results indicate that P&O and INC are the best algorithms for DMPPT.

+More

Cite this article
APA

APA

MLA

Chicago

Victor Andrean,Pei Cheng Chang,Kuo Lung Lian,.A Review and New Problems Discovery of Four Simple Decentralized Maximum Power Point Tracking Algorithms—Perturb and Observe, Incremental Conductance, Golden Section Search, and Newton’s Quadratic Interpolation. 11 (11),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel