Welcome to the IKCEST

Applied Sciences | Vol.8, Issue.11 | | Pages

Applied Sciences

Low Threshold Plasmonic Nanolaser Based on Graphene

Litu Xu,Fang Li,Shuai Liu,Fuqiang Yao,Yahui Liu  
Abstract

A hybrid plasmonic nanolaser based on nanowire/air slot/semicircular graphene and metal wire structure was designed. In this structure, the waveguides in the nanowires and the graphene-metal interface are coupled to form a hybrid plasma mode, which effectively reduces the metal loss. The mode and strong coupling of the laser are analyzed by using the finite-element method. Its electric field distribution, propagation loss, normalized mode area, quality factor, and lasing threshold are studied with the different geometric model. Simulation results reveal that the performance of the laser using this structure can be optimized by adjusting the model parameters. Under the optimal parameters, the effective propagation loss is only 0.0096, and the lasing threshold can be as low as 0.14 μm−1. This structure can achieve deep sub-wavelength confinement and low-loss transmission, and provides technical support for the miniaturization and integration of nano-devices.

Original Text (This is the original text for your reference.)

Low Threshold Plasmonic Nanolaser Based on Graphene

A hybrid plasmonic nanolaser based on nanowire/air slot/semicircular graphene and metal wire structure was designed. In this structure, the waveguides in the nanowires and the graphene-metal interface are coupled to form a hybrid plasma mode, which effectively reduces the metal loss. The mode and strong coupling of the laser are analyzed by using the finite-element method. Its electric field distribution, propagation loss, normalized mode area, quality factor, and lasing threshold are studied with the different geometric model. Simulation results reveal that the performance of the laser using this structure can be optimized by adjusting the model parameters. Under the optimal parameters, the effective propagation loss is only 0.0096, and the lasing threshold can be as low as 0.14 μm−1. This structure can achieve deep sub-wavelength confinement and low-loss transmission, and provides technical support for the miniaturization and integration of nano-devices.

+More

Cite this article
APA

APA

MLA

Chicago

Litu Xu,Fang Li,Shuai Liu,Fuqiang Yao,Yahui Liu,.Low Threshold Plasmonic Nanolaser Based on Graphene. 8 (11),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel