Frontiers in Plant Science | Vol.9, Issue. | | Pages
Common Features Between the Proteomes of Floral and Extrafloral Nectar From the Castor Plant (Ricinus Communis) and the Proteomes of Exudates From Carnivorous Plants
Label-free quantitative proteome analysis of extrafloral (EFN) and floral nectar (FN) from castor (Ricinus communis) plants resulted in the identification of 72 and 37 proteins, respectively. Thirty proteins were differentially accumulated between EFN and FN, and 24 of these were more abundant in the EFN. In addition to proteins involved in maintaining the nectar pathogen free such as chitinases and glucan 1,3-beta-glucosidase, both proteomes share an array of peptidases, lipases, carbohydrases, and nucleases. A total of 39 of the identified proteins, comprising different classes of hydrolases, were found to have biochemical matching partners in the exudates of at least five genera of carnivorous plants, indicating the EFN and FN possess a potential to digest biological material from microbial, animal or plant origin equivalent to the exudates of carnivorous plants.
Original Text (This is the original text for your reference.)
Common Features Between the Proteomes of Floral and Extrafloral Nectar From the Castor Plant (Ricinus Communis) and the Proteomes of Exudates From Carnivorous Plants
Label-free quantitative proteome analysis of extrafloral (EFN) and floral nectar (FN) from castor (Ricinus communis) plants resulted in the identification of 72 and 37 proteins, respectively. Thirty proteins were differentially accumulated between EFN and FN, and 24 of these were more abundant in the EFN. In addition to proteins involved in maintaining the nectar pathogen free such as chitinases and glucan 1,3-beta-glucosidase, both proteomes share an array of peptidases, lipases, carbohydrases, and nucleases. A total of 39 of the identified proteins, comprising different classes of hydrolases, were found to have biochemical matching partners in the exudates of at least five genera of carnivorous plants, indicating the EFN and FN possess a potential to digest biological material from microbial, animal or plant origin equivalent to the exudates of carnivorous plants.
+More
carnivorous extrafloral efn proteome analysis peptidases lipases carbohydrases floral nectar fn biochemical matching
APA
MLA
Chicago
,.Common Features Between the Proteomes of Floral and Extrafloral Nectar From the Castor Plant (Ricinus Communis) and the Proteomes of Exudates From Carnivorous Plants. 9 (),.
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: