BioResources | Vol.11, Issue.2 | | Pages
Data-driven Method for Pulp Properties Estimation in Stock Preparation
Pulp properties are key factors to assessing the performance of a refining process, evaluating operational conditions, and optimizing the process of stock preparation. This paper presents a data-driven approach to estimate the beating degree and wet weight of pulp after refining using case-based reasoning (CBR). Historical data generated in a refining process at a paper mill was used to evaluate the proposed model. The root mean square error (RMSE) and coefficient of variance of the root mean square error (CV-RMSE) of the beating degree estimation results in CBR were 1.30 and 4.32%, respectively, and the RMSE and CV-RMSE of the wet weight were 0.50 and 19.09%, respectively. The results of beating degree prediction were satisfactory, and the results of wet weight were also acceptable. To test the performance of CBR model, support vector machine algorithm (SVM) were employed to verify the effectiveness and accuracy. The RMSE and CV-RMSE of the beating degree estimation results in SVM were 1.20 and 4.02%, respectively, and the RMSE and CV-RMSE of the wet weight were 0.44 and 16.73%, respectively. As a result, the proposed model was as accurate as the SVM method.
Original Text (This is the original text for your reference.)
Data-driven Method for Pulp Properties Estimation in Stock Preparation
Pulp properties are key factors to assessing the performance of a refining process, evaluating operational conditions, and optimizing the process of stock preparation. This paper presents a data-driven approach to estimate the beating degree and wet weight of pulp after refining using case-based reasoning (CBR). Historical data generated in a refining process at a paper mill was used to evaluate the proposed model. The root mean square error (RMSE) and coefficient of variance of the root mean square error (CV-RMSE) of the beating degree estimation results in CBR were 1.30 and 4.32%, respectively, and the RMSE and CV-RMSE of the wet weight were 0.50 and 19.09%, respectively. The results of beating degree prediction were satisfactory, and the results of wet weight were also acceptable. To test the performance of CBR model, support vector machine algorithm (SVM) were employed to verify the effectiveness and accuracy. The RMSE and CV-RMSE of the beating degree estimation results in SVM were 1.20 and 4.02%, respectively, and the RMSE and CV-RMSE of the wet weight were 0.44 and 16.73%, respectively. As a result, the proposed model was as accurate as the SVM method.
+More
cvrmse model root mean square error estimate the beating degree and wet weight of pulp after refining casebased reasoning support vector machine algorithm svm a refining process evaluating operational conditions beating degree prediction optimizing the process of stock rmse historical data datadriven approach variance cbr beating degree estimation svm method
APA
MLA
Chicago
Xiangyu Zhang,Jigeng Li,Yanzhong Zhang,Wei Cai,Huanbin Liu,.Data-driven Method for Pulp Properties Estimation in Stock Preparation. 11 (2),.
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: