Welcome to the IKCEST

IEEE Transactions on Circuits and Systems I: Regular Papers | Vol.66, Issue.8 | | Pages 3041-3051

IEEE Transactions on Circuits and Systems I: Regular Papers

Practical Implementation of Memristor-Based Threshold Logic Gates

Georgios PapandroulidakisAlexander SerbAli KhiatGeoff V. MerrettThemis Prodromakis  
Abstract

Current advances in emerging memory technologies enable novel and unconventional computing architectures for high-performance and low-power electronic systems, capable of carrying out massively parallel operations at the edge. One emerging technology, ReRAM, also known to belong in the family of memristors (memory resistors), is gathering attention due to its attractive features for logic and in-memory computing and benefits which follow from its technological attributes, such as nanoscale dimensions, low-power operation, and multi-state programming. At the same time, the design with CMOS is quickly reaching its physical and functional limitations, and further research toward novel logic families, such as threshold logic gates (TLGs), is scoped. In this paper, we introduce a physical implementation of a memristor-based current-mode TLG (MCMTLG) circuit and validate its design and operation through multiple experimental setups. We demonstrate two-input, three-input, and four-input MCMTLG configurations and showcase their reconfiguration capability. This is achieved by varying memristive weights arbitrarily for shaping the classification decision boundary, thus showing a promise as an alternative hardware-friendly implementation of artificial neural networks. Through the employment of real memristor devices as the equivalent of synaptic weights in TLGs, we are realizing components that can be used toward an in silico classifier.

Original Text (This is the original text for your reference.)

Practical Implementation of Memristor-Based Threshold Logic Gates

Current advances in emerging memory technologies enable novel and unconventional computing architectures for high-performance and low-power electronic systems, capable of carrying out massively parallel operations at the edge. One emerging technology, ReRAM, also known to belong in the family of memristors (memory resistors), is gathering attention due to its attractive features for logic and in-memory computing and benefits which follow from its technological attributes, such as nanoscale dimensions, low-power operation, and multi-state programming. At the same time, the design with CMOS is quickly reaching its physical and functional limitations, and further research toward novel logic families, such as threshold logic gates (TLGs), is scoped. In this paper, we introduce a physical implementation of a memristor-based current-mode TLG (MCMTLG) circuit and validate its design and operation through multiple experimental setups. We demonstrate two-input, three-input, and four-input MCMTLG configurations and showcase their reconfiguration capability. This is achieved by varying memristive weights arbitrarily for shaping the classification decision boundary, thus showing a promise as an alternative hardware-friendly implementation of artificial neural networks. Through the employment of real memristor devices as the equivalent of synaptic weights in TLGs, we are realizing components that can be used toward an in silico classifier.

+More

Cite this article
APA

APA

MLA

Chicago

Georgios PapandroulidakisAlexander SerbAli KhiatGeoff V. MerrettThemis Prodromakis,.Practical Implementation of Memristor-Based Threshold Logic Gates. 66 (8),3041-3051.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel