Welcome to the IKCEST

Journal of Finance and Data Science | Vol.2, Issue.4 | 2017-08-15 | Pages

Journal of Finance and Data Science

An overview on data representation learning: From traditional feature learning to recent deep learning

Guoqiang Zhong,Li-Na Wang,Xiao Ling,Junyu Dong  
Abstract

Since about 100 years ago, to learn the intrinsic structure of data, many representation learning approaches have been proposed, either linear or nonlinear, either supervised or unsupervised, either “shallow” or “deep”. Particularly, deep architectures are widely applied for representation learning in recent years, and have delivered top results in many tasks, such as image classification, object detection and speech recognition. In this paper, we review the development of data representation learning methods. Specifically, we investigate both traditional feature learning algorithms and state-of-the-art deep learning models. The history of data representation learning is introduced, while available online resources (e.g., courses, tutorials and books) and toolboxes are provided. At the end, we give a few remarks on the development of data representation learning and suggest some interesting research directions in this area.

Original Text (This is the original text for your reference.)

An overview on data representation learning: From traditional feature learning to recent deep learning

Since about 100 years ago, to learn the intrinsic structure of data, many representation learning approaches have been proposed, either linear or nonlinear, either supervised or unsupervised, either “shallow” or “deep”. Particularly, deep architectures are widely applied for representation learning in recent years, and have delivered top results in many tasks, such as image classification, object detection and speech recognition. In this paper, we review the development of data representation learning methods. Specifically, we investigate both traditional feature learning algorithms and state-of-the-art deep learning models. The history of data representation learning is introduced, while available online resources (e.g., courses, tutorials and books) and toolboxes are provided. At the end, we give a few remarks on the development of data representation learning and suggest some interesting research directions in this area.

+More

Cite this article
APA

APA

MLA

Chicago

Guoqiang Zhong,Li-Na Wang,Xiao Ling,Junyu Dong,.An overview on data representation learning: From traditional feature learning to recent deep learning. 2 (4),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel