Welcome to the IKCEST

Mathematical Problems in Engineering | Vol.2017, Issue. | 2017-05-29 | Pages

Mathematical Problems in Engineering

Prediction of Seawall Settlement Based on a Combined LS-ARIMA Model

Peng Qin,Chunmei Cheng  
Abstract

The analysis and prediction of seawall settlement are important for seawall engineering maintenance and disaster prevention. Based on the measured seawall settlement time series data, a combined LS-ARIMA forecasting model that fits the trend item by the least-square (LS) method and the season item by the differential self-regression moving average (ARIMA) model was proposed in this study. The monitoring data of one seawall project in Zhejiang, China, is taken as an example to verify the model efficiency and prediction ability. The results show that the prediction accuracy of the new combined LS-ARIMA model was high, with the average relative error (ARE) of 0.23%, much better than that of the traditional ARIMA model (ARE = 0.70%) and the GM (1, 1) model (ARE = 33.43%). This new model has clear physical conception and can effectively improve the prediction accuracy, implying that it can fully tap the dynamic information of monitoring data. The proposed model in this study provides a new research idea for data analysis and prediction of the seawall settlement.

Original Text (This is the original text for your reference.)

Prediction of Seawall Settlement Based on a Combined LS-ARIMA Model

The analysis and prediction of seawall settlement are important for seawall engineering maintenance and disaster prevention. Based on the measured seawall settlement time series data, a combined LS-ARIMA forecasting model that fits the trend item by the least-square (LS) method and the season item by the differential self-regression moving average (ARIMA) model was proposed in this study. The monitoring data of one seawall project in Zhejiang, China, is taken as an example to verify the model efficiency and prediction ability. The results show that the prediction accuracy of the new combined LS-ARIMA model was high, with the average relative error (ARE) of 0.23%, much better than that of the traditional ARIMA model (ARE = 0.70%) and the GM (1, 1) model (ARE = 33.43%). This new model has clear physical conception and can effectively improve the prediction accuracy, implying that it can fully tap the dynamic information of monitoring data. The proposed model in this study provides a new research idea for data analysis and prediction of the seawall settlement.

+More

Cite this article
APA

APA

MLA

Chicago

Peng Qin,Chunmei Cheng,.Prediction of Seawall Settlement Based on a Combined LS-ARIMA Model. 2017 (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel