Welcome to the IKCEST

Remote Sensing | Vol.5, Issue.7 | 2017-05-29 | Pages

Remote Sensing

Multi-Year Comparison of Carbon Dioxide from Satellite Data with Ground-Based FTS Measurements (2003–2011)

Juanle Wang,Jiulin Sun,Ru Miao  
Abstract

This paper presents a comparison of CO2 products derived from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), Greenhouse Gases Observing Satellite (GOSAT) and Atmospheric Infrared Sounder (AIRS), with reference to calibration data obtained using the high-resolution ground-based Fourier Transform Spectrometers (g-b FTS) in the Total Carbon Column Observing Network (TCCON). Based on the monthly averages, we calculate the global offsets and regional relative precisions between satellite products and g-b FTS measurements. The results are as follows: the monthly means of SCIAMACHY data are systemically slightly lower than g-b FTS, but limited in coverage; the GOSAT data are superior in stability, but inferior in systematic error; the mean difference between AIRS data and that of g-b FTS is small; and the monthly global coverage is above 95%. Therefore, the AIRS data are better than the other two satellite products in both coverage and accuracy. We also estimate linear trends based on monthly mean data and find that the differences between the satellite products and the g-b FTS data range from 0.25 ppm (SCIAMACHY) to 1.26 ppm (AIRS). The latitudinal distributions of the zonal means of the three satellite products show similar spatial features. The seasonal cycle of satellite products also illustrates the same trend with g-b FTS observations.

Original Text (This is the original text for your reference.)

Multi-Year Comparison of Carbon Dioxide from Satellite Data with Ground-Based FTS Measurements (2003–2011)

This paper presents a comparison of CO2 products derived from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), Greenhouse Gases Observing Satellite (GOSAT) and Atmospheric Infrared Sounder (AIRS), with reference to calibration data obtained using the high-resolution ground-based Fourier Transform Spectrometers (g-b FTS) in the Total Carbon Column Observing Network (TCCON). Based on the monthly averages, we calculate the global offsets and regional relative precisions between satellite products and g-b FTS measurements. The results are as follows: the monthly means of SCIAMACHY data are systemically slightly lower than g-b FTS, but limited in coverage; the GOSAT data are superior in stability, but inferior in systematic error; the mean difference between AIRS data and that of g-b FTS is small; and the monthly global coverage is above 95%. Therefore, the AIRS data are better than the other two satellite products in both coverage and accuracy. We also estimate linear trends based on monthly mean data and find that the differences between the satellite products and the g-b FTS data range from 0.25 ppm (SCIAMACHY) to 1.26 ppm (AIRS). The latitudinal distributions of the zonal means of the three satellite products show similar spatial features. The seasonal cycle of satellite products also illustrates the same trend with g-b FTS observations.

+More

Cite this article
APA

APA

MLA

Chicago

Juanle Wang,Jiulin Sun,Ru Miao,.Multi-Year Comparison of Carbon Dioxide from Satellite Data with Ground-Based FTS Measurements (2003–2011). 5 (7),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel