IEEE Transactions on Microwave Theory and Techniques | Vol.64, Issue.10 | | Pages 3319-3331
Phase-Based Methods for Heart Rate Detection Using UWB Impulse Doppler Radar
Ultra-wideband (UWB) pulse Doppler radars can be used for noncontact vital signs monitoring of more than one subject. However, their detected signals typically have low signal-to-noise ratio (SNR) causing significant heart rate (HR) detection errors, as the spurious harmonics of respiration signals and mixed products of respiration and heartbeat signals (that can be relatively higher than heartbeat signals) corrupt conventional fast Fourier transform spectrograms. In this paper, we extend the complex signal demodulation (CSD) and arctangent demodulation (AD) techniques previously used for accurately detecting the phase variations of reflected signals of continuous wave radars to UWB pulse radars as well. These detection techniques reduce the impact of the interfering harmonic signals, thus improving the SNR of the detected vital sign signals. To further enhance the accuracy of the HR estimation, a recently developed state-space method has been successfully combined with CSD and AD techniques and over 10 dB improvements in SNR is demonstrated. The implementation of these various detection techniques has been experimentally investigated and full error and SNR analysis of the HR detection are presented.
Original Text (This is the original text for your reference.)
Phase-Based Methods for Heart Rate Detection Using UWB Impulse Doppler Radar
Ultra-wideband (UWB) pulse Doppler radars can be used for noncontact vital signs monitoring of more than one subject. However, their detected signals typically have low signal-to-noise ratio (SNR) causing significant heart rate (HR) detection errors, as the spurious harmonics of respiration signals and mixed products of respiration and heartbeat signals (that can be relatively higher than heartbeat signals) corrupt conventional fast Fourier transform spectrograms. In this paper, we extend the complex signal demodulation (CSD) and arctangent demodulation (AD) techniques previously used for accurately detecting the phase variations of reflected signals of continuous wave radars to UWB pulse radars as well. These detection techniques reduce the impact of the interfering harmonic signals, thus improving the SNR of the detected vital sign signals. To further enhance the accuracy of the HR estimation, a recently developed state-space method has been successfully combined with CSD and AD techniques and over 10 dB improvements in SNR is demonstrated. The implementation of these various detection techniques has been experimentally investigated and full error and SNR analysis of the HR detection are presented.
+More
vital sign snr mixed products of respiration and heartbeat signals pulse doppler radars heart rate hr detection detected the hr estimation complex signal demodulation csd and arctangent demodulation ad techniques phase variations of reflected signals of continuous wave radars full error fast fourier transform noncontact vital signs monitoring low signaltonoise ratio statespace method accuracy detection techniques
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: