Welcome to the IKCEST

Earth Surface Processes and Landforms | Vol.44, Issue.44 | | Pages

Earth Surface Processes and Landforms

Strategies to improve the explanatory power of a dynamic slope stability model by enhancing land cover parameterisation and model complexity

Elmar M. Schmaltz, L.P.H. Van Beek, Thom A. Bogaard, Sabine Kraushaar, Stefan Steger, Thomas Glade  
Abstract

Despite the importance of land cover on landscape hydrology and slope stability, the representation of land cover dynamics in physically based models and their associated ecohydrological effects on slope stability is rather scarce. In this study, we assess the impact of different levels of complexity in land cover parameterisation on the explanatory power of a dynamic and process‐based spatial slope stability model. Firstly, we present available and collected data sets and account for the stepwise parameterisation of the model. Secondly, we present approaches to simulate land cover: 1) a grassland landscape without forest coverage; 2) spatially static forest conditions, in which we assume limited knowledge about forest composition; 3) more detailed information of forested areas based on the computation of leaf area development and the implementation of vegetation‐related processes; 4) similar to the third approach but with the additional consideration of the spatial expansion and vertical growth of vegetation. Lastly, the model is calibrated based on meteorological data sets and groundwater measurements. The model results are quantitatively validated for two landslide‐triggering events that occurred in Western Austria. Predictive performances are estimated using the Area Under the receiver operating characteristic Curve (AUC). Our findings indicate that the performance of the slope stability model was strongly determined by model complexity and land cover parameterisation. The implementation of leaf area development and land cover dynamics further yield an acceptable predictive performance (AUC ~0.71‐0.75) and a better conservativeness of the predicted unstable areas (FoC ~0.71). The consideration of dynamic land cover expansion provided better performances than the solely consideration of leaf area development. The results of this study highlight that an increase of effort in the land cover parameterisation of a dynamic slope stability model can increase the explanatory power of the model. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

Original Text (This is the original text for your reference.)

Strategies to improve the explanatory power of a dynamic slope stability model by enhancing land cover parameterisation and model complexity

Despite the importance of land cover on landscape hydrology and slope stability, the representation of land cover dynamics in physically based models and their associated ecohydrological effects on slope stability is rather scarce. In this study, we assess the impact of different levels of complexity in land cover parameterisation on the explanatory power of a dynamic and process‐based spatial slope stability model. Firstly, we present available and collected data sets and account for the stepwise parameterisation of the model. Secondly, we present approaches to simulate land cover: 1) a grassland landscape without forest coverage; 2) spatially static forest conditions, in which we assume limited knowledge about forest composition; 3) more detailed information of forested areas based on the computation of leaf area development and the implementation of vegetation‐related processes; 4) similar to the third approach but with the additional consideration of the spatial expansion and vertical growth of vegetation. Lastly, the model is calibrated based on meteorological data sets and groundwater measurements. The model results are quantitatively validated for two landslide‐triggering events that occurred in Western Austria. Predictive performances are estimated using the Area Under the receiver operating characteristic Curve (AUC). Our findings indicate that the performance of the slope stability model was strongly determined by model complexity and land cover parameterisation. The implementation of leaf area development and land cover dynamics further yield an acceptable predictive performance (AUC ~0.71‐0.75) and a better conservativeness of the predicted unstable areas (FoC ~0.71). The consideration of dynamic land cover expansion provided better performances than the solely consideration of leaf area development. The results of this study highlight that an increase of effort in the land cover parameterisation of a dynamic slope stability model can increase the explanatory power of the model. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

+More

Cite this article
APA

APA

MLA

Chicago

Elmar M. Schmaltz, L.P.H. Van Beek, Thom A. Bogaard, Sabine Kraushaar, Stefan Steger, Thomas Glade,.Strategies to improve the explanatory power of a dynamic slope stability model by enhancing land cover parameterisation and model complexity. 44 (44),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel