Welcome to the IKCEST

Scientific Programming | Vol.16, Issue.1 | 2017-05-30 | Pages

Scientific Programming

Discover Gene Specific Local Co-Regulations from Time-Course Gene Expression Data

Hai Wang,Ji Zhang,Qigang Gao  
Abstract

Discovering gene co-regulatory relationships is one of most important research in DNA microarray data analysis. The problem of gene specific co-regulation discovery is to, for a particular gene of interest (called target gene), identify the condition subsets where strong gene co-regulations of the target gene are observed and its co-regulated genes in these condition subsets. The co-regulations are local in the sense that they occur in some subsets of full experimental conditions. The study on this problem can contribute to better understanding and characterizing the target gene during the biological activity involved. In this paper, we propose an innovative method for finding gene specific co-regulations using genetic algorithm (GA). A sliding window is used to delimit the allowed length of conditions in which gene co-regulations occur and an ad hoc GA, called the progressive GA, is performed in each window position to find those condition subsets having high fitness. It is called progressive because the initial population for the GA in a window position inherits the top-ranked individuals obtained in its preceding window position, enabling the GA to achieve a better accuracy than the non-progressive algorithm. kNN Lookup Table is utilized to substantially speed up fitness evaluation in the GA. Experimental results with a real-life gene expression data demonstrate the efficiency and effectiveness of our technique in discovering gene specific co-regulations.

Original Text (This is the original text for your reference.)

Discover Gene Specific Local Co-Regulations from Time-Course Gene Expression Data

Discovering gene co-regulatory relationships is one of most important research in DNA microarray data analysis. The problem of gene specific co-regulation discovery is to, for a particular gene of interest (called target gene), identify the condition subsets where strong gene co-regulations of the target gene are observed and its co-regulated genes in these condition subsets. The co-regulations are local in the sense that they occur in some subsets of full experimental conditions. The study on this problem can contribute to better understanding and characterizing the target gene during the biological activity involved. In this paper, we propose an innovative method for finding gene specific co-regulations using genetic algorithm (GA). A sliding window is used to delimit the allowed length of conditions in which gene co-regulations occur and an ad hoc GA, called the progressive GA, is performed in each window position to find those condition subsets having high fitness. It is called progressive because the initial population for the GA in a window position inherits the top-ranked individuals obtained in its preceding window position, enabling the GA to achieve a better accuracy than the non-progressive algorithm. kNN Lookup Table is utilized to substantially speed up fitness evaluation in the GA. Experimental results with a real-life gene expression data demonstrate the efficiency and effectiveness of our technique in discovering gene specific co-regulations.

+More

Cite this article
APA

APA

MLA

Chicago

Hai Wang,Ji Zhang,Qigang Gao,.Discover Gene Specific Local Co-Regulations from Time-Course Gene Expression Data. 16 (1),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel