The Scientific World Journal | Vol.2014, Issue. | 2017-05-29 | Pages
An Integrated Use of Topography with RSI in Gully Mapping, Shandong Peninsula, China
Taking the Quickbird optical satellite imagery of the small watershed of Beiyanzigou valley of Qixia city, Shandong province, as the study data, we proposed a new method by using a fused image of topography with remote sensing imagery (RSI) to achieve a high precision interpretation of gully edge lines. The technique first transformed remote sensing imagery into HSV color space from RGB color space. Then the slope threshold values of gully edge line and gully thalweg were gained through field survey and the slope data were segmented using thresholding, respectively. Based on the fused image in combination with gully thalweg thresholding vectors, the gully thalweg thresholding vectors were amended. Lastly, the gully edge line might be interpreted based on the amended gully thalweg vectors, fused image, gully edge line thresholding vectors, and slope data. A testing region was selected in the study area to assess the accuracy. Then accuracy assessment of the gully information interpreted by both interpreting remote sensing imagery only and the fused image was performed using the deviation, kappa coefficient, and overall accuracy of error matrix. Compared with interpreting remote sensing imagery only, the overall accuracy and kappa coefficient are increased by 24.080% and 264.364%, respectively. The average deviations of gully head and gully edge line are reduced by 60.448% and 67.406%, respectively. The test results show the thematic and the positional accuracy of gully interpreted by new method are significantly higher. Finally, the error sources for interpretation accuracy by the two methods were analyzed.
Original Text (This is the original text for your reference.)
An Integrated Use of Topography with RSI in Gully Mapping, Shandong Peninsula, China
Taking the Quickbird optical satellite imagery of the small watershed of Beiyanzigou valley of Qixia city, Shandong province, as the study data, we proposed a new method by using a fused image of topography with remote sensing imagery (RSI) to achieve a high precision interpretation of gully edge lines. The technique first transformed remote sensing imagery into HSV color space from RGB color space. Then the slope threshold values of gully edge line and gully thalweg were gained through field survey and the slope data were segmented using thresholding, respectively. Based on the fused image in combination with gully thalweg thresholding vectors, the gully thalweg thresholding vectors were amended. Lastly, the gully edge line might be interpreted based on the amended gully thalweg vectors, fused image, gully edge line thresholding vectors, and slope data. A testing region was selected in the study area to assess the accuracy. Then accuracy assessment of the gully information interpreted by both interpreting remote sensing imagery only and the fused image was performed using the deviation, kappa coefficient, and overall accuracy of error matrix. Compared with interpreting remote sensing imagery only, the overall accuracy and kappa coefficient are increased by 24.080% and 264.364%, respectively. The average deviations of gully head and gully edge line are reduced by 60.448% and 67.406%, respectively. The test results show the thematic and the positional accuracy of gully interpreted by new method are significantly higher. Finally, the error sources for interpretation accuracy by the two methods were analyzed.
+More
deviation kappa coefficient precision interpretation of gully edge overall accuracy of error matrix thematic and the positional accuracy amended gully thalweg vectors fused image gully edge line thresholding vectors rgb color quickbird optical satellite imagery slope threshold hsv color interpretation accuracy fused image of topography with remote sensing imagery
APA
MLA
Chicago
Tao Li,Hongbo Shao,Tao Wang,Fuhong He,Lijuan Gu,Weiguo Jiang,.An Integrated Use of Topography with RSI in Gully Mapping, Shandong Peninsula, China. 2014 (),.
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: