Welcome to the IKCEST

Geoscientific Model Development | Vol.9, Issue.6 | 2017-06-02 | Pages

Geoscientific Model Development

Improved forecasting of thermospheric densities using multi-model ensembles

M. J. Angling,S. Elvidge,H. C. Godinez  
Abstract

This paper presents the first known application of multi-model ensembles to the forecasting of the thermosphere. A multi-model ensemble (MME) is a method for combining different, independent models. The main advantage of using an MME is to reduce the effect of model errors and bias, since it is expected that the model errors will, at least partly, cancel. The MME, with its reduced uncertainties, can then be used as the initial conditions in a physics-based thermosphere model for forecasting. This should increase the forecast skill since a reduction in the errors of the initial conditions of a model generally increases model skill. In this paper the Thermosphere–Ionosphere Electrodynamic General Circulation Model (TIE-GCM), the US Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Exosphere 2000 (NRLMSISE-00), and Global Ionosphere–Thermosphere Model (GITM) have been used to construct the MME. As well as comparisons between the MMEs and the “standard” runs of the model, the MME densities have been propagated forward in time using the TIE-GCM. It is shown that thermospheric forecasts of up to 6 h, using the MME, have a reduction in the root mean square error of greater than 60 %. The paper also highlights differences in model performance between times of solar minimum and maximum.

Original Text (This is the original text for your reference.)

Improved forecasting of thermospheric densities using multi-model ensembles

This paper presents the first known application of multi-model ensembles to the forecasting of the thermosphere. A multi-model ensemble (MME) is a method for combining different, independent models. The main advantage of using an MME is to reduce the effect of model errors and bias, since it is expected that the model errors will, at least partly, cancel. The MME, with its reduced uncertainties, can then be used as the initial conditions in a physics-based thermosphere model for forecasting. This should increase the forecast skill since a reduction in the errors of the initial conditions of a model generally increases model skill. In this paper the Thermosphere–Ionosphere Electrodynamic General Circulation Model (TIE-GCM), the US Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Exosphere 2000 (NRLMSISE-00), and Global Ionosphere–Thermosphere Model (GITM) have been used to construct the MME. As well as comparisons between the MMEs and the “standard” runs of the model, the MME densities have been propagated forward in time using the TIE-GCM. It is shown that thermospheric forecasts of up to 6 h, using the MME, have a reduction in the root mean square error of greater than 60 %. The paper also highlights differences in model performance between times of solar minimum and maximum.

+More

Cite this article
APA

APA

MLA

Chicago

M. J. Angling,S. Elvidge,H. C. Godinez,.Improved forecasting of thermospheric densities using multi-model ensembles. 9 (6),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel