CIRP Journal of Manufacturing Science and Technology | Vol.17, Issue.0 | | Pages
Multiscale measurement of air foils with data fusion of three optical inspection systems
Measuring the geometry of machine parts with complex geometries creates new challenges towards measurement systems. Due to cost, fast inspection is nevertheless desirable. Additionally the characterization of a parts health and functionality requires geometric information in different scales. We have developed a set of optical measurement systems which together meet those requirements: A borescopic fringe projection system, a macroscopic fringe projection system using newly developed algorithms for fast inspection of turbine blades and a low coherence Michelson interferometer (LCI). The first can detect geometric variances in hard to reach areas, e.g. inside machines or in between parts with highly complex geometries like blade integrated discs (blisks). Using fully adaptable fringe patters, the second system can locate geometric variances with a single fringe pattern. These patterns lead to high sensitivity and high measurement speed. Afterwards the LCI further inspects the micro structure of defects and characterizes the surface structure of the air foil. The presented algorithms provide fast 3D reconstruction with a nanometer resolution and, compared to other systems, a large measurement range. Together, these three inspection systems are capable to detect and quantify defects or geometric variances of industrial parts in different scales. This information improves the prediction of the reliability of a part and helps extending its lifetime to reduce the maintenance costs of machines. As an example a turbine blade was measured with all three systems and the results are visualized in one dataset. Means to merge the measurements are discussed.
Original Text (This is the original text for your reference.)
Multiscale measurement of air foils with data fusion of three optical inspection systems
Measuring the geometry of machine parts with complex geometries creates new challenges towards measurement systems. Due to cost, fast inspection is nevertheless desirable. Additionally the characterization of a parts health and functionality requires geometric information in different scales. We have developed a set of optical measurement systems which together meet those requirements: A borescopic fringe projection system, a macroscopic fringe projection system using newly developed algorithms for fast inspection of turbine blades and a low coherence Michelson interferometer (LCI). The first can detect geometric variances in hard to reach areas, e.g. inside machines or in between parts with highly complex geometries like blade integrated discs (blisks). Using fully adaptable fringe patters, the second system can locate geometric variances with a single fringe pattern. These patterns lead to high sensitivity and high measurement speed. Afterwards the LCI further inspects the micro structure of defects and characterizes the surface structure of the air foil. The presented algorithms provide fast 3D reconstruction with a nanometer resolution and, compared to other systems, a large measurement range. Together, these three inspection systems are capable to detect and quantify defects or geometric variances of industrial parts in different scales. This information improves the prediction of the reliability of a part and helps extending its lifetime to reduce the maintenance costs of machines. As an example a turbine blade was measured with all three systems and the results are visualized in one dataset. Means to merge the measurements are discussed.
+More
characterization of low coherence michelson interferometer macroscopic fringe projection system optical measurement systems geometric variances of industrial parts fully adaptable fringe patters micro structure of defects geometric information parts health blade integrated discs fast inspection of turbine reliability fast 3d reconstruction the surface structure of the air lci prediction functionality algorithms complex geometries
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: