Geoscientific Model Development | Vol.5, Issue.3 | 2017-05-30 | Pages
The ACCENT-protocol: a framework for benchmarking and model evaluation
We summarise results from a workshop on "Model Benchmarking and Quality Assurance" of the EU-Network of Excellence ACCENT, including results from other activities (e.g. COST Action 732) and publications. A formalised evaluation protocol is presented, i.e. a generic formalism describing the procedure of how to perform a model evaluation. This includes eight steps and examples from global model applications which are given for illustration. The first and important step is concerning the purpose of the model application, i.e. the addressed underlying scientific or political question. We give examples to demonstrate that there is no model evaluation per se, i.e. without a focused purpose. Model evaluation is testing, whether a model is fit for its purpose. The following steps are deduced from the purpose and include model requirements, input data, key processes and quantities, benchmark data, quality indicators, sensitivities, as well as benchmarking and grading. We define "benchmarking" as the process of comparing the model output against either observational data or high fidelity model data, i.e. benchmark data. Special focus is given to the uncertainties, e.g. in observational data, which have the potential to lead to wrong conclusions in the model evaluation if not considered carefully.
Original Text (This is the original text for your reference.)
The ACCENT-protocol: a framework for benchmarking and model evaluation
We summarise results from a workshop on "Model Benchmarking and Quality Assurance" of the EU-Network of Excellence ACCENT, including results from other activities (e.g. COST Action 732) and publications. A formalised evaluation protocol is presented, i.e. a generic formalism describing the procedure of how to perform a model evaluation. This includes eight steps and examples from global model applications which are given for illustration. The first and important step is concerning the purpose of the model application, i.e. the addressed underlying scientific or political question. We give examples to demonstrate that there is no model evaluation per se, i.e. without a focused purpose. Model evaluation is testing, whether a model is fit for its purpose. The following steps are deduced from the purpose and include model requirements, input data, key processes and quantities, benchmark data, quality indicators, sensitivities, as well as benchmarking and grading. We define "benchmarking" as the process of comparing the model output against either observational data or high fidelity model data, i.e. benchmark data. Special focus is given to the uncertainties, e.g. in observational data, which have the potential to lead to wrong conclusions in the model evaluation if not considered carefully.
+More
grading evaluation protocol uncertainties eg high fidelity model data ie benchmark data quality indicators sensitivities observational data model benchmarking and quality global model
APA
MLA
Chicago
V. Grewe,I. S. A. Isaksen,A. Volz-Thomas,P. Builtjes,N. Moussiopoulos,C. Borrego,.The ACCENT-protocol: a framework for benchmarking and model evaluation. 5 (3),.
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: