Welcome to the IKCEST

PLoS ONE | Vol.9, Issue.10 | 2017-05-29 | Pages

PLoS ONE

MSH1-induced non-genetic variation provides a source of phenotypic diversity in Sorghum bicolor.

Sally A Mackenzie,Roberto de la Rosa Santamaria,Mon-Ray Shao,Guomei Wang,David O Nino-Liu,Hardik Kundariya,Yashitola Wamboldt,Ismail Dweikat  
Abstract

MutS Homolog 1 (MSH1) encodes a plant-specific protein that functions in mitochondria and chloroplasts. We showed previously that disruption or suppression of the MSH1 gene results in a process of developmental reprogramming that is heritable and non-genetic in subsequent generations. In Arabidopsis, this developmental reprogramming process is accompanied by striking changes in gene expression of organellar and stress response genes. This developmentally reprogrammed state, when used in crossing, results in a range of variation for plant growth potential. Here we investigate the implications of MSH1 modulation in a crop species. We found that MSH1-mediated phenotypic variation in Sorghum bicolor is heritable and potentially valuable for crop breeding. We observed phenotypic variation for grain yield, plant height, flowering time, panicle architecture, and above-ground biomass. Focusing on grain yield and plant height, we found some lines that appeared to respond to selection. Based on amenability of this system to implementation in a range of crops, and the scope of phenotypic variation that is derived, our results suggest that MSH1 suppression provides a novel approach for breeding in crops.

Original Text (This is the original text for your reference.)

MSH1-induced non-genetic variation provides a source of phenotypic diversity in Sorghum bicolor.

MutS Homolog 1 (MSH1) encodes a plant-specific protein that functions in mitochondria and chloroplasts. We showed previously that disruption or suppression of the MSH1 gene results in a process of developmental reprogramming that is heritable and non-genetic in subsequent generations. In Arabidopsis, this developmental reprogramming process is accompanied by striking changes in gene expression of organellar and stress response genes. This developmentally reprogrammed state, when used in crossing, results in a range of variation for plant growth potential. Here we investigate the implications of MSH1 modulation in a crop species. We found that MSH1-mediated phenotypic variation in Sorghum bicolor is heritable and potentially valuable for crop breeding. We observed phenotypic variation for grain yield, plant height, flowering time, panicle architecture, and above-ground biomass. Focusing on grain yield and plant height, we found some lines that appeared to respond to selection. Based on amenability of this system to implementation in a range of crops, and the scope of phenotypic variation that is derived, our results suggest that MSH1 suppression provides a novel approach for breeding in crops.

+More

Cite this article
APA

APA

MLA

Chicago

Sally A Mackenzie,Roberto de la Rosa Santamaria,Mon-Ray Shao,Guomei Wang,David O Nino-Liu,Hardik Kundariya,Yashitola Wamboldt,Ismail Dweikat,.MSH1-induced non-genetic variation provides a source of phenotypic diversity in Sorghum bicolor.. 9 (10),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel