Welcome to the IKCEST

Image and Vision Computing | Vol.53, Issue.0 | | Pages 20-34

Image and Vision Computing

A framework for dynamic restructuring of semantic video analysis systems based on learning attention control

Mohamad-Hoseyn Sigari   Hamid-Reza Pourreza   Hamid Soltanian-Zadeh  
Abstract

Current semantic video analysis systems are usually hierarchical and consist of some levels to overcome semantic gaps between low-level features and high-level concepts. In these systems, some features, descriptors, objects or concepts are extracted in each level and therefore, total computational complexity of such systems is huge. In this paper, we present a new general framework to impose attention control on a video analysis system using Q-learning. Thus, our proposed framework restructures a given system dynamically to direct attention to the blocks extracting the most informative features/concepts and reduces computational complexity of the system. In other words, the proposed framework directs flow of processing actively using a learning attention control method. The proposed framework is evaluated for event detection in broadcast soccer videos using limited numbers of training samples. Experiments show that the proposed framework is able to learn how to direct attention to informative features/concepts and restructure the initial structure of the system dynamically to reach the final goal with less computational complexity.

Original Text (This is the original text for your reference.)

A framework for dynamic restructuring of semantic video analysis systems based on learning attention control

Current semantic video analysis systems are usually hierarchical and consist of some levels to overcome semantic gaps between low-level features and high-level concepts. In these systems, some features, descriptors, objects or concepts are extracted in each level and therefore, total computational complexity of such systems is huge. In this paper, we present a new general framework to impose attention control on a video analysis system using Q-learning. Thus, our proposed framework restructures a given system dynamically to direct attention to the blocks extracting the most informative features/concepts and reduces computational complexity of the system. In other words, the proposed framework directs flow of processing actively using a learning attention control method. The proposed framework is evaluated for event detection in broadcast soccer videos using limited numbers of training samples. Experiments show that the proposed framework is able to learn how to direct attention to informative features/concepts and restructure the initial structure of the system dynamically to reach the final goal with less computational complexity.

+More

Cite this article
APA

APA

MLA

Chicago

Mohamad-Hoseyn Sigari, Hamid-Reza Pourreza, Hamid Soltanian-Zadeh,.A framework for dynamic restructuring of semantic video analysis systems based on learning attention control. 53 (0),20-34.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel