Welcome to the IKCEST

AIP Advances | Vol.6, Issue.1 | 2017-05-29 | Pages

AIP Advances

Optimal inverter logic gate using 10-nm double gate-all-around (DGAA) transistor with asymmetric channel width

Myunghwan Ryu,Franklin Bien,Youngmin Kim  
Abstract

We investigate the electrical characteristics of a double-gate-all-around (DGAA) transistor with an asymmetric channel width using three-dimensional device simulation. The DGAA structure creates a silicon nanotube field-effect transistor (NTFET) with a core-shell gate architecture, which can solve the problem of loss of gate controllability of the channel and provides improved short-channel behavior. The channel width asymmetry is analyzed on both sides of the terminals of the transistors, i.e., source and drain. In addition, we consider both n-type and p-type DGAA FETs, which are essential to forming a unit logic cell, the inverter. Simulation results reveal that, according to the carrier types, the location of the asymmetry has a different effect on the electrical properties of the devices. Thus, we propose the N/P DGAA FET structure with an asymmetric channel width to form the optimal inverter. Various electrical metrics are analyzed to investigate the benefits of the optimal inverter structure over the conventional inverter structure. Simulation results show that 27% delay and 15% leakage power improvement are enabled in the optimum structure.

Original Text (This is the original text for your reference.)

Optimal inverter logic gate using 10-nm double gate-all-around (DGAA) transistor with asymmetric channel width

We investigate the electrical characteristics of a double-gate-all-around (DGAA) transistor with an asymmetric channel width using three-dimensional device simulation. The DGAA structure creates a silicon nanotube field-effect transistor (NTFET) with a core-shell gate architecture, which can solve the problem of loss of gate controllability of the channel and provides improved short-channel behavior. The channel width asymmetry is analyzed on both sides of the terminals of the transistors, i.e., source and drain. In addition, we consider both n-type and p-type DGAA FETs, which are essential to forming a unit logic cell, the inverter. Simulation results reveal that, according to the carrier types, the location of the asymmetry has a different effect on the electrical properties of the devices. Thus, we propose the N/P DGAA FET structure with an asymmetric channel width to form the optimal inverter. Various electrical metrics are analyzed to investigate the benefits of the optimal inverter structure over the conventional inverter structure. Simulation results show that 27% delay and 15% leakage power improvement are enabled in the optimum structure.

+More

Cite this article
APA

APA

MLA

Chicago

Myunghwan Ryu,Franklin Bien,Youngmin Kim,.Optimal inverter logic gate using 10-nm double gate-all-around (DGAA) transistor with asymmetric channel width. 6 (1),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel