Welcome to the IKCEST

Energies | Vol.4, Issue.7 | 2017-05-30 | Pages

Energies

Improved Bagging Algorithm for Pattern Recognition in UHF Signals of Partial Discharges

Jian Li,Caixin Sun,Yuanbing Zheng,Tianyan Jiang  
Abstract

This paper presents an Improved Bagging Algorithm (IBA) to recognize ultra-high-frequency (UHF) signals of partial discharges (PDs). This approach establishes the sample information entropy for each sample and the re-sampling process of the traditional Bagging algorithm is optimized. Four typical discharge models were designed in the laboratory to simulate the internal insulation faults of power transformers. The optimized third order Peano fractal antenna was applied to capture the PD UHF signals. Multi-scale fractal dimensions as well as energy parameters extracted from the decomposed signals by wavelet packet transform were used as the characteristic parameters for pattern recognition. In order to verify the effectiveness of the proposed algorithm, the back propagation neural network (BPNN) and the support vector machine (SVM) based on the IBA were adopted in this paper to carry out the pattern recognition for PD UHF signals. Experimental results show that the proposed approach of IBA can effectively enhance the generalization capability and also improve the accuracy of the recognition for PD UHF signals.

Original Text (This is the original text for your reference.)

Improved Bagging Algorithm for Pattern Recognition in UHF Signals of Partial Discharges

This paper presents an Improved Bagging Algorithm (IBA) to recognize ultra-high-frequency (UHF) signals of partial discharges (PDs). This approach establishes the sample information entropy for each sample and the re-sampling process of the traditional Bagging algorithm is optimized. Four typical discharge models were designed in the laboratory to simulate the internal insulation faults of power transformers. The optimized third order Peano fractal antenna was applied to capture the PD UHF signals. Multi-scale fractal dimensions as well as energy parameters extracted from the decomposed signals by wavelet packet transform were used as the characteristic parameters for pattern recognition. In order to verify the effectiveness of the proposed algorithm, the back propagation neural network (BPNN) and the support vector machine (SVM) based on the IBA were adopted in this paper to carry out the pattern recognition for PD UHF signals. Experimental results show that the proposed approach of IBA can effectively enhance the generalization capability and also improve the accuracy of the recognition for PD UHF signals.

+More

Cite this article
APA

APA

MLA

Chicago

Jian Li,Caixin Sun,Yuanbing Zheng,Tianyan Jiang,.Improved Bagging Algorithm for Pattern Recognition in UHF Signals of Partial Discharges. 4 (7),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel