Welcome to the IKCEST

Mathematical Problems in Engineering | Vol.2015, Issue. | 2017-05-29 | Pages

Mathematical Problems in Engineering

Automatic Classification of Remote Sensing Images Using Multiple Classifier Systems

Chunxiang Cao,Bin Yang,Ying Xing,Xiaowen Li  
Abstract

It is a challenge to obtain accurate result in remote sensing images classification, which is affected by many factors. In this paper, aiming at correctly identifying land use types reflec ted in remote sensing images, support vector machine, maximum likelihood classifier, backpropagation neural network, fuzzy c-means, and minimum distance classifier were combined to construct three multiple classifier systems (MCSs). Two MCSs were implemented, namely, comparative major voting (CMV) and Bayesian average (BA). One method called WA-AHP was proposed, which introduced analytic hierarchy process into MCS. Classification results of base classifiers and MCSs were compared with the ground truth map. Accuracy indicators were computed and receiver operating characteristic curves were illustrated, so as to evaluate the performance of MCSs. Experimental results show that employing MCSs can increase classification accuracy significantly, compared with base classifiers. From the accuracy evaluation result and visual check, the best MCS is WA-AHP with overall accuracy of 94.2%, which overmatches BA and rivals CMV in this paper. The producer’s accuracy of each land use type proves the good performance of WA-AHP. Therefore, we can draw the conclusion that MCS is superior to base classifiers in remote sensing image classification, and WA-AHP is an efficient MCS.

Original Text (This is the original text for your reference.)

Automatic Classification of Remote Sensing Images Using Multiple Classifier Systems

It is a challenge to obtain accurate result in remote sensing images classification, which is affected by many factors. In this paper, aiming at correctly identifying land use types reflec ted in remote sensing images, support vector machine, maximum likelihood classifier, backpropagation neural network, fuzzy c-means, and minimum distance classifier were combined to construct three multiple classifier systems (MCSs). Two MCSs were implemented, namely, comparative major voting (CMV) and Bayesian average (BA). One method called WA-AHP was proposed, which introduced analytic hierarchy process into MCS. Classification results of base classifiers and MCSs were compared with the ground truth map. Accuracy indicators were computed and receiver operating characteristic curves were illustrated, so as to evaluate the performance of MCSs. Experimental results show that employing MCSs can increase classification accuracy significantly, compared with base classifiers. From the accuracy evaluation result and visual check, the best MCS is WA-AHP with overall accuracy of 94.2%, which overmatches BA and rivals CMV in this paper. The producer’s accuracy of each land use type proves the good performance of WA-AHP. Therefore, we can draw the conclusion that MCS is superior to base classifiers in remote sensing image classification, and WA-AHP is an efficient MCS.

+More

Cite this article
APA

APA

MLA

Chicago

Chunxiang Cao,Bin Yang,Ying Xing,Xiaowen Li,.Automatic Classification of Remote Sensing Images Using Multiple Classifier Systems. 2015 (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel