Mathematical Problems in Engineering | Vol.2015, Issue. | 2017-05-29 | Pages
Automatic Classification of Remote Sensing Images Using Multiple Classifier Systems
It is a challenge to obtain accurate result in remote sensing images classification, which is affected by many factors. In this paper, aiming at correctly identifying land use types reflec ted in remote sensing images, support vector machine, maximum likelihood classifier, backpropagation neural network, fuzzy c-means, and minimum distance classifier were combined to construct three multiple classifier systems (MCSs). Two MCSs were implemented, namely, comparative major voting (CMV) and Bayesian average (BA). One method called WA-AHP was proposed, which introduced analytic hierarchy process into MCS. Classification results of base classifiers and MCSs were compared with the ground truth map. Accuracy indicators were computed and receiver operating characteristic curves were illustrated, so as to evaluate the performance of MCSs. Experimental results show that employing MCSs can increase classification accuracy significantly, compared with base classifiers. From the accuracy evaluation result and visual check, the best MCS is WA-AHP with overall accuracy of 94.2%, which overmatches BA and rivals CMV in this paper. The producer’s accuracy of each land use type proves the good performance of WA-AHP. Therefore, we can draw the conclusion that MCS is superior to base classifiers in remote sensing image classification, and WA-AHP is an efficient MCS.
Original Text (This is the original text for your reference.)
Automatic Classification of Remote Sensing Images Using Multiple Classifier Systems
It is a challenge to obtain accurate result in remote sensing images classification, which is affected by many factors. In this paper, aiming at correctly identifying land use types reflec ted in remote sensing images, support vector machine, maximum likelihood classifier, backpropagation neural network, fuzzy c-means, and minimum distance classifier were combined to construct three multiple classifier systems (MCSs). Two MCSs were implemented, namely, comparative major voting (CMV) and Bayesian average (BA). One method called WA-AHP was proposed, which introduced analytic hierarchy process into MCS. Classification results of base classifiers and MCSs were compared with the ground truth map. Accuracy indicators were computed and receiver operating characteristic curves were illustrated, so as to evaluate the performance of MCSs. Experimental results show that employing MCSs can increase classification accuracy significantly, compared with base classifiers. From the accuracy evaluation result and visual check, the best MCS is WA-AHP with overall accuracy of 94.2%, which overmatches BA and rivals CMV in this paper. The producer’s accuracy of each land use type proves the good performance of WA-AHP. Therefore, we can draw the conclusion that MCS is superior to base classifiers in remote sensing image classification, and WA-AHP is an efficient MCS.
+More
mcs classification accuracy analytic hierarchy process remote sensing image classification bayesian average land use types major voting cmv waahp mcss support vector machine maximum likelihood classifier backpropagation neural network fuzzy cmeans and minimum distance classifier receiver operating characteristic curves base classifiers ground multiple classifier systems
APA
MLA
Chicago
Chunxiang Cao,Bin Yang,Ying Xing,Xiaowen Li,.Automatic Classification of Remote Sensing Images Using Multiple Classifier Systems. 2015 (),.
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: