Welcome to the IKCEST

Journal of Web Semantics | Vol.37–38, Issue.0 | | Pages

Journal of Web Semantics

Contextualized ranking of entity types based on knowledge graphs

Michele Catasta   Roman Prokofyev   Philippe Cudré-Mauroux   Karl Aberer   Alberto Tonon   Gianluca Demartini  
Abstract

A large fraction of online queries targets entities. For this reason, Search Engine Result Pages (SERPs) increasingly contain information about the searched entities such as pictures, short summaries, related entities, and factual information. A key facet that is often displayed on the SERPs and that is instrumental for many applications is the entity type. However, an entity is usually not associated to a single generic type in the background knowledge graph but rather to a set of more specific types, which may be relevant or not given the document context. For example, one can find on the Linked Open Data cloud the fact that Tom Hanks is a person, an actor, and a person from Concord, California. All these types are correct but some may be too general to be interesting (e.g., person), while other may be interesting but already known to the user (e.g., actor), or may be irrelevant given the current browsing context (e.g., person from Concord, California). In this paper, we define the new task of ranking entity types given an entity and its context. We propose and evaluate new methods to find the most relevant entity type based on collection statistics and on the knowledge graph structure interconnecting entities and types. An extensive experimental evaluation over several document collections at different levels of granularity (e.g., sentences, paragraphs) and different type hierarchies (including DBpedia, Freebase, and schema.org) shows that hierarchy-based approaches provide more accurate results when picking entity types to be displayed to the end-user.

Original Text (This is the original text for your reference.)

Contextualized ranking of entity types based on knowledge graphs

A large fraction of online queries targets entities. For this reason, Search Engine Result Pages (SERPs) increasingly contain information about the searched entities such as pictures, short summaries, related entities, and factual information. A key facet that is often displayed on the SERPs and that is instrumental for many applications is the entity type. However, an entity is usually not associated to a single generic type in the background knowledge graph but rather to a set of more specific types, which may be relevant or not given the document context. For example, one can find on the Linked Open Data cloud the fact that Tom Hanks is a person, an actor, and a person from Concord, California. All these types are correct but some may be too general to be interesting (e.g., person), while other may be interesting but already known to the user (e.g., actor), or may be irrelevant given the current browsing context (e.g., person from Concord, California). In this paper, we define the new task of ranking entity types given an entity and its context. We propose and evaluate new methods to find the most relevant entity type based on collection statistics and on the knowledge graph structure interconnecting entities and types. An extensive experimental evaluation over several document collections at different levels of granularity (e.g., sentences, paragraphs) and different type hierarchies (including DBpedia, Freebase, and schema.org) shows that hierarchy-based approaches provide more accurate results when picking entity types to be displayed to the end-user.

+More

Cite this article
APA

APA

MLA

Chicago

Michele Catasta, Roman Prokofyev, Philippe Cudré-Mauroux, Karl Aberer,Alberto Tonon, Gianluca Demartini,.Contextualized ranking of entity types based on knowledge graphs. 37–38 (0),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel