Welcome to the IKCEST

IEEE Transactions on Knowledge and Data Engineering | Vol.28, Issue.10 | | Pages 2582-2595

IEEE Transactions on Knowledge and Data Engineering

Discovering Anomalies on Mixed-Type Data Using a Generalized Student- t Based Approach

Yating Wang   Chang-Tien Lu   Yen-Cheng Lu   Feng Chen  
Abstract

Anomaly detection in mixed-type data is an important problem that has not been well addressed in the machine learning field. Existing approaches focus on computational efficiency and their correlation modeling between mixed-type attributes is heuristically driven, lacking a statistical foundation. In this paper, we propose MIxed-Type Robust dEtection (MITRE), a robust error buffering approach for anomaly detection in mixed-type datasets. Because of its non-Gaussian design, the problem is analytically intractable. Two novel Bayesian inference approaches are utilized to solve the intractable inferences: Integrated-nested Laplace Approximation (INLA), and Expectation Propagation (EP) with Variational Expectation-Maximization (EM). A set of algorithmic optimizations is implemented to improve the computational efficiency. A comprehensive suite of experiments was conducted on both synthetic and real world data to test the effectiveness and efficiency of MITRE.

Original Text (This is the original text for your reference.)

Discovering Anomalies on Mixed-Type Data Using a Generalized Student- t Based Approach

Anomaly detection in mixed-type data is an important problem that has not been well addressed in the machine learning field. Existing approaches focus on computational efficiency and their correlation modeling between mixed-type attributes is heuristically driven, lacking a statistical foundation. In this paper, we propose MIxed-Type Robust dEtection (MITRE), a robust error buffering approach for anomaly detection in mixed-type datasets. Because of its non-Gaussian design, the problem is analytically intractable. Two novel Bayesian inference approaches are utilized to solve the intractable inferences: Integrated-nested Laplace Approximation (INLA), and Expectation Propagation (EP) with Variational Expectation-Maximization (EM). A set of algorithmic optimizations is implemented to improve the computational efficiency. A comprehensive suite of experiments was conducted on both synthetic and real world data to test the effectiveness and efficiency of MITRE.

+More

Cite this article
APA

APA

MLA

Chicago

Yating Wang, Chang-Tien Lu,Yen-Cheng Lu, Feng Chen,.Discovering Anomalies on Mixed-Type Data Using a Generalized Student- t Based Approach. 28 (10),2582-2595.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel