Welcome to the IKCEST

The Journal of Engineering | Vol., Issue. | 2017-05-23 | Pages

The Journal of Engineering

From static ternary adders to high-performance race-free dynamic ones

Shirin Rezaie,Reza Faghih Mirzaee,Keivan Navi,Omid Hashemipour  
Abstract

This study explores the suitability of dynamic logic style in ternary logic. It presents high-performance dynamic ternary half and full adders, which are essential components in computer arithmetic. The complete transformation from a static ternary design into its dynamic form is comprehensively investigated. The proposed dynamic strategy does not suffer from any race or charge sharing problems. These dynamic logic problems are dealt with in this study. In addition, the number of successive pass-transistors is reduced by a design technique which shortens the critical path of ternary circuits. The new adder cells are simulated by using Synopsys HSPICE and 32 nm carbon nanotube field-effect transistor technology. Simulation results demonstrate the superiority of dynamic ternary circuits. The proposed dynamic ternary half adder operates 21% faster, consumes 23% less power, and has even 14 fewer transistors than its static counterpart.

Original Text (This is the original text for your reference.)

From static ternary adders to high-performance race-free dynamic ones

This study explores the suitability of dynamic logic style in ternary logic. It presents high-performance dynamic ternary half and full adders, which are essential components in computer arithmetic. The complete transformation from a static ternary design into its dynamic form is comprehensively investigated. The proposed dynamic strategy does not suffer from any race or charge sharing problems. These dynamic logic problems are dealt with in this study. In addition, the number of successive pass-transistors is reduced by a design technique which shortens the critical path of ternary circuits. The new adder cells are simulated by using Synopsys HSPICE and 32 nm carbon nanotube field-effect transistor technology. Simulation results demonstrate the superiority of dynamic ternary circuits. The proposed dynamic ternary half adder operates 21% faster, consumes 23% less power, and has even 14 fewer transistors than its static counterpart.

+More

Cite this article
APA

APA

MLA

Chicago

Shirin Rezaie,Reza Faghih Mirzaee,Keivan Navi,Omid Hashemipour,.From static ternary adders to high-performance race-free dynamic ones. (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel