Welcome to the IKCEST

Advanced Functional Materials | Vol., Issue. | 2020-05-18 | Pages

Advanced Functional Materials

Mechanochromic and Thermochromic Sensors Based on Graphene Infused Polymer Opals

Matthew J. Large   Jun Han   Alan B. Dalton   Ross Maspero   Jurgen Scheerder   Joseph L. Keddie   Marian Florescu   Jonathan N. Coleman   Alice A. K. King   Joselito M. Razal   Izabela Jurewicz   Ravi Shanker   Ronan J. Smith   Claudia Backes   Sean P. Ogilvie  
Abstract

High quality opal‐like photonic crystals containing graphene are fabricated using evaporation‐driven self‐assembly of soft polymer colloids. A miniscule amount of pristine graphene within a colloidal crystal lattice results in the formation of colloidal crystals with a strong angle‐dependent structural color and a stop band that can be reversibly shifted across the visible spectrum. The crystals can be mechanically deformed or can reversibly change color as a function of their temperature, hence their sensitive mechanochromic and thermochromic response make them attractive candidates for a wide range of visual sensing applications. In particular, it is shown that the crystals are excellent candidates for visual strain sensors or integrated time‐temperature indicators which act over large temperature windows. Given the versatility of these crystals, this method represents a simple, inexpensive, and scalable approach to produce multifunctional graphene infused synthetic opals and opens up exciting applications for novel solution‐processable nanomaterial based photonics.

Original Text (This is the original text for your reference.)

Mechanochromic and Thermochromic Sensors Based on Graphene Infused Polymer Opals

High quality opal‐like photonic crystals containing graphene are fabricated using evaporation‐driven self‐assembly of soft polymer colloids. A miniscule amount of pristine graphene within a colloidal crystal lattice results in the formation of colloidal crystals with a strong angle‐dependent structural color and a stop band that can be reversibly shifted across the visible spectrum. The crystals can be mechanically deformed or can reversibly change color as a function of their temperature, hence their sensitive mechanochromic and thermochromic response make them attractive candidates for a wide range of visual sensing applications. In particular, it is shown that the crystals are excellent candidates for visual strain sensors or integrated time‐temperature indicators which act over large temperature windows. Given the versatility of these crystals, this method represents a simple, inexpensive, and scalable approach to produce multifunctional graphene infused synthetic opals and opens up exciting applications for novel solution‐processable nanomaterial based photonics.

+More

Cite this article
APA

APA

MLA

Chicago

Matthew J. Large, Jun Han, Alan B. Dalton, Ross Maspero, Jurgen Scheerder, Joseph L. Keddie, Marian Florescu, Jonathan N. Coleman, Alice A. K. King, Joselito M. Razal,Izabela Jurewicz, Ravi Shanker, Ronan J. Smith, Claudia Backes, Sean P. Ogilvie,.Mechanochromic and Thermochromic Sensors Based on Graphene Infused Polymer Opals. (),.

References

C. M. Cardinal, Y. D. Jung, K. H. Ahn, L. F. Francis, AIChE J. 2010, 56, 2769.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C. M. Soukoulis, Nat. Mater. 2004, 3, 444.

X. Zhao, Q. Zhang, D. Chen, P. Lu, Macromolecules 2010, 43, 2357.

X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 2012, 41, 666.

E. Armstrong, C. O'Dwyer, J. Mater. Chem. C 2015, 3, 6109.

A. C. Arsenault, D. P. Puzzo, I. Manners, G. A. Ozin, Nat. Photonics 2007, 1, 468.

B. Bao, D. Liu, Y. Yang, Z. Shen, B. You, J. Nanomater. 2013, 2013, 14.

I. R. Howell, C. Li, N. S. Colella, K. Ito, J. J. Watkins, ACS Appl. Mater. Interfaces 2015, 7, 3641.

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, Nat. Photonics 2010, 4, 611.

H. Kim, A. A. Abdala, C. W. Macosko, Macromolecules 2010, 43, 6515.

S.‐H. Kim, S. Y. Lee, S.‐M. Yang, G.‐R. Yi, NPG Asia Mater 2011, 3, 25.

K. J. Valentas, E. Rotstein, R. P. Singh, Handbook of Food Engineering Practice, Vol. Kinetics of food deterioration and shelf‐life prediction, CRC Press, Boca Raton, FL 1997.

K. Xie, M. Guo, H. Huang, J. Mater. Chem. C 2015, 3, 10665.

J. Kerry, P. Butler, Smart Packaging Technologies for Fast Moving Consumer Goods, Wiley, New York 2008.

J.‐J. Huang, Y. J. Yuan, Phys. Chem. Chem. Phys. 2016, 18, 12312.

P. Worajittiphon, M. J. Large, A. A. K. King, I. Jurewicz, A. B. Dalton, Front. Mater. 2015, https://doi.org/10.3389/fmats.2015.00015.

I. Jurewicz, P. Worajittiphon, A. A. K. King, P. J. Sellin, J. L. Keddie, A. B. Dalton, J. Phys. Chem. B 2011, 115, 6395.

I. Jurewicz, J. L. Keddie, A. B. Dalton, Langmuir 2012, 28, 8266.

A. Utgenannt, R. Maspero, A. Fortini, R. Turner, M. Florescu, C. Jeynes, A. G. Kanaras, O. L. Muskens, R. P. Sear, J. L. Keddie, ACS Nano 2016, 10, 2232.

L. Duan, B. You, S. Zhou, L. Wu, J. Mater. Chem. 2011, 21, 687.

K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O'Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S. E. O'Brien, E. K. McGuire, B. M. Sanchez, G. S. Duesberg, N. McEvoy, T. J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J. N. Coleman, Nat. Mater. 2014, 13, 624.

M. S. Tirumkudulu, W. B. Russel, Langmuir 2004, 20, 2947.

H. Yamada, T. Nakamura, Y. Yamada, K. Yano, Adv. Mater. 2009, 21, 4134.

J. J. Baumberg, O. L. Pursiainen, P. Spahn, Phys. Rev. B 2009, 80, 201103.

Y. Lin, S. Liu, J. Peng, L. Liu, Compos. Sci. Technol. 2016, 131, 40.

M. P. Howard, W. F. Reinhart, T. Sanyal, M. S. Shell, A. Nikoubashman, A. Z. Panagiotopoulos, J. Chem. Phys. 2018, 149, 094901.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nat. Nano 2008, 3, 563.

J. Keddie, A. F. Routh, Fundamentals of Latex Film Formation: Processes and Properties, Springer, Netherlands 2010.

E. Tkalya, M. Ghislandi, A. Alekseev, C. Koning, J. Loos, J. Mater. Chem. 2010, 20, 3035.

C. I. Aguirre, E. Reguera, A. Stein, ACS Appl. Mater. Interfaces 2010, 2, 3257.

D. Huang, M. Zeng, L. Wang, L. Zhang, Z. Cheng, RSC Adv. 2018, 8, 34839.

Y. Rharbi, F. Boué, M. Joanicot, B. Cabane, Macromolecules 1996, 29, 4346.

A. K. Wright, R. C. Duncan, K. A. Beekman, Biophys. J. 1973, 13, 795.

O. M. Maragó, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, A. C. Ferrari, ACS Nano 2010, 4, 7515.

F. Fu, Z. Chen, H. Wang, C. Liu, Y. Liu, Y. Zhao, Nanoscale 2019, 11, 10846.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 1308.

G. Chen, W. Weng, D. Wu, C. Wu, J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 155.

J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J.‐G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O'Hern, H. Cao, E. R. Dufresne, Adv. Mater. 2010, 22, 2939.

O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, T. Ruhl, Opt. Express 2007, 15, 9553.

J. L. Atwood, G. W. Gokel, L. Barbour, Comprehensive Supramolecular Chemistry II, Elsevier Science, Oxford 2017.

W. Li, B. Yang, D. Wang, Langmuir 2008, 24, 13772.

R. Hong, Y. Shi, X.‐Q. Wang, L. Peng, X. Wu, H. Cheng, S. Chen, RSC Adv. 2017, 7, 33258.

J. Zhang, Y. Li, X. Zhang, B. Yang, Adv. Mater. 2010, 22, 4249.

I. Jurewicz, A. A. K. King, P. Worajittiphon, P. Asanithi, E. W. Brunner, R. P. Sear, T. J. C. Hosea, J. L. Keddie, A. B. Dalton, Macromol. Rapid Commun. 2010, 31, 609.

R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, Á. Blanco, Adv. Mater. 1997, 9, 257.

Y. Liu, A. M. Gajewicz, V. Rodin, W.‐J. Soer, J. Scheerder, G. Satgurunathan, P. J. McDonald, J. L. Keddie, J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1658.

M. N. Shkunov, Z. V. Vardeny, M. C. DeLong, R. C. Polson, A. A. Zakhidov, R. H. Baughman, Adv. Funct. Mater. 2002, 12, 21.

J. Zhang, Z. Sun, B. Yang, Curr. Opin. Colloid Interface Sci. 2009, 14, 103.

A. Y. Menshikova, B. M. Shabsels, N. N. Shevchenko, A. G. Bazhenova, A. B. Pevtsov, A. V. Sel'kin, A. Y. Bilibin, Colloids Surf. A 2007, 298, 27.

L. Grande, A. Augustyn, J. Weinstein, Gems and Gemstones: Timeless Natural Beauty of the Mineral World, University of Chicago Press, Chicago 2009.

S. K. Lee, G. R. Yi, J. H. Moon, S. M. Yang, D. J. Pine, Adv. Mater. 2006, 18, 2111.

Y. Huang, J. Wu, K. C. Hwang, Phys. Rev. B 2006, 74, 245413.

S. P. Koenig, N. G. Boddeti, M. L. Dunn, J. S. Bunch, Nat. Nano 2011, 6, 543.

Y. Lin, X. Dong, S. Liu, S. Chen, Y. Wei, L. Liu, ACS Appl. Mater. Interfaces 2016, 8, 24143.

P. Worajittiphon, I. Jurewicz, A. A. K. King, J. L. Keddie, A. B. Dalton, Adv. Mater. 2010, 22, 5310.

J. L. Keddie, Materials Science and Engineering: R: Reports 1997, 21, 101.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282.

X. Zhao, Y. Cao, F. Ito, H.‐H. Chen, K. Nagai, Y.‐H. Zhao, Z.‐Z. Gu, Angew. Chem., Int. Ed. 2006, 45, 6835.

P. Wu, X. Shen, C. G. Schäfer, J. Pan, J. Guo, C. Wang, Nanoscale 2019, 11, 20015.

F. Wang, X. Zhang, Y. Lin, L. Wang, J. Zhu, ACS Appl. Mater. Interfaces 2016, 8, 5009.

J. S. Bunch, M. L. Dunn, Solid State Commun. 2012, 152, 1359.

A. S. Wajid, H. S. T. Ahmed, S. Das, F. Irin, A. F. Jankowski, M. J. Green, Macromol. Mater. Eng. 2012, n/a.

A. S. Barnard, H. Guo, Nature's Nanostructures, Pan Stanford Publishing, Singapore 2012.

J. L. Keddie, A. F. Routh, Fundamentals of Latex Film Formation: Processes and Properties, Springer, Berlin 2010.

H. S. Lee, T. S. Shim, H. Hwang, S.‐M. Yang, S.‐H. Kim, Chem. Mater. 2013, 25, 2684.

A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, Science 1998, 282, 897.

Y. Takeoka, S. Yoshioka, M. Teshima, A. Takano, M. Harun‐Ur‐Rashid, T. Seki, Sci. Rep. 2013, 3, 2371.

C. Zhou, X. Gong, J. Han, R. Guo, Soft Matter 2015, 11, 2555.

W. B. Russel, Phase Transitions 1990, 21, 127.

K.‐Y. Shin, S. Lee, S. Hong, J. Jang, ACS Appl. Mater. Interfaces 2014, 6, 5531.

B. Jiang, J. G. Tsavalas, D. C. Sundberg, Prog. Org. Coat. 2017, 105, 56.

C. Oriakhi, in Smart Materials, CRC Press, Boca Raton, FL 2008.

A. Marini, J. D. Cox, F. J. García de Abajo, Phys. Rev. B 2017, 95, 125408.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel