Welcome to the IKCEST

Angewandte Chemie International Edition | Vol., Issue. | 2020-05-13 | Pages

Angewandte Chemie International Edition

N‐Trifluoromethyl Hydrazines, Indoles and Their Derivatives

Thomas Scattolin   Franziska Schoenebeck   Samir Bouayad‐Gervais  
Abstract

Reported herein is the first efficient strategy to synthesize a broad range of unsymmetrical N‐CF3 hydrazines, which served as platform to unlock numerous currently inaccessible derivatives, such as tri‐ and tetra‐substituted N‐CF3 hydrazines, hydrazones, sulfonyl hydrazines, and valuable N‐CF3 indoles. These compounds proved to be remarkably robust, being compatible with acids, bases, and a wide range of synthetic manipulations. The feasibility of RN(CF3)‐NH2 to function as a directing group in C−H functionalization is also showcased.

Original Text (This is the original text for your reference.)

N‐Trifluoromethyl Hydrazines, Indoles and Their Derivatives

Reported herein is the first efficient strategy to synthesize a broad range of unsymmetrical N‐CF3 hydrazines, which served as platform to unlock numerous currently inaccessible derivatives, such as tri‐ and tetra‐substituted N‐CF3 hydrazines, hydrazones, sulfonyl hydrazines, and valuable N‐CF3 indoles. These compounds proved to be remarkably robust, being compatible with acids, bases, and a wide range of synthetic manipulations. The feasibility of RN(CF3)‐NH2 to function as a directing group in C−H functionalization is also showcased.

+More

Cite this article
APA

APA

MLA

Chicago

Thomas Scattolin, Franziska Schoenebeck,Samir Bouayad‐Gervais,.N‐Trifluoromethyl Hydrazines, Indoles and Their Derivatives. (),.

References

Y. Xue, Z. Fan, X. Jiang, K. Wu, M. Wang, C. Ding, Q. Yao, A. Zhang, Eur. J. Org. Chem. 2014, 7481.

S. Han, Y. Shin, S. Sharma, N. K. Mishra, J. Park, M. Kim, M. Kim, J. Jang, I. S. Kim, Org. Lett. 2014, 16, 2494;

In our tests, deprotonation of 2,3-dimethyl-1H-indole and subsequent treatment with Togni's reagent did not yield the corresponding N-CF3 indole. Electrophilic reactions of indoles with Togni's reagent also do not yield N-CF3 indoles, see: M. S. Wiehn, E. V. Vinogradova, A. Togni, J. Fluorine Chem. 2010, 131, 951.

K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881;

N. Koga, J. P. Anselme, J. Org. Chem. 1968, 33, 3963;

D. L. Hughes, Org. Prep. Proced. Int. 1993, 25, 607.

G. Men, J.-M. Lehn, J. Am. Chem. Soc. 2017, 139, 2474;

P. Xu, G. Wang, Z. Wu, S. li, C. Zhu, Chem. Sci. 2017, 8, 1303;

G. H. Sprenger, J. M. Shreeve, J. Am. Chem. Soc. 1974, 96, 1770;

W. Sundermeyer, M. Witz, J. Fluorine Chem. 1986, 34, 251;

O. A. Tomashenko, V. V. Grushin, Chem. Rev. 2011, 111, 4475;

W. Lutz, W. Sundermeyer, Chem. Ber. 1979, 112, 2158;

K. Watanabe, T. Mino, C. Hatta, S. Ito, M. Sakamoto, Org. Biomol. Chem. 2015, 13, 11645.

N. A. Meanwell, J. Med. Chem. 2018, 61, 5822.

A. Tlili, F. Toulgoat, T. Billard, Angew. Chem. Int. Ed. 2016, 55, 11726; Angew. Chem. 2016, 128, 11900;

S. H. Jungbauer, S. M. Huber, J. Am. Chem. Soc. 2015, 137, 12110;

A. Ros, R. López-Rodríguez, B. Estepa, E. Álvarez, R. Fernández, J. M. Lassaletta, J. Am. Chem. Soc. 2012, 134, 4573;

“Halogen Bonding II: Impact on Materials Chemistry and Life Science”: G. R. Pierangelo Metrangolo, Topics in Current Chemistry, Springer, Heidelberg, 2015, p.  359.

T. Scattolin, E. Senol, G. Yin, Q. Guo, F. Schoenebeck, Angew. Chem. Int. Ed. 2018, 57, 12425; Angew. Chem. 2018, 130, 12605.

A. DeAngelis, D.-H. Wang, S. L. Buchwald, Angew. Chem. Int. Ed. 2013, 52, 3434; Angew. Chem. 2013, 125, 3518.

C. S. Meira, J. M. dos Santos Filho, C. C. Sousa, P. S. Anjos, J. V. Cerqueira, H. A. Dias Neto, R. G. da Silveira, H. M. Russo, J.-L. Wolfender, E. F. Queiroz, D. R. M. Moreira, M. B. P. Soares, Bioorg. Med. Chem. 2018, 26, 1971;

For 0.2 mmol scale, 0.1 mL of water in 0.5 mL of THF was used.

U. Ragnarsson, Chem. Soc. Rev. 2001, 30, 205.

K. W. Bair, D. R. Lancia, H. Li, J. Loch, W. Lu, M. W. Martin, D. S. Millan, S. E. Schiller, M. J. Tebbe, Patent WO 2014164749 A1, 2014.

S. W. C. Cheng, H. Joyce LI, US Patent US20190169171 A1, 2018;

E. Nieddu, B. Pollarolo, M. T. Mazzei, M. Anzaldi, S. Schenone, N. Pedemonte, L. J. V. Galietta, M. Mazzei, Arch. Pharm. Chem. Life Sci. 2016, 349, 112;

M. Kurz, W. Reichen, Tetrahedron Lett. 1978, 19, 1433;

R. Lygaitis, V. Getautis, J. V. Grazulevicius, Chem. Soc. Rev. 2008, 37, 770;

CCDC 1989758, 1989759, 1989760 and 1989761 (5, 15, 28 & 29) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

R. Stollé, H. Nieland, M. Merkle, J. Prakt. Chem. 1927, 117, 185.

B. Robinson, Chem. Rev. 1963, 63, 373.

A. Mahmoodi, M. Ebrahimi, Prog. Org. Coat. 2018, 114, 223.

M. Wolter, A. Klapars, S. L. Buchwald, Org. Lett. 2001, 3, 3803;

C. Sambiagio, D. Schönbauer, R. Blieck, T. Dao-Huy, G. Pototschnig, P. Schaaf, T. Wiesinger, M. F. Zia, J. Wencel-Delord, T. Besset, B. U. W. Maes, M. Schnürch, Chem. Soc. Rev. 2018, 47, 6603;

A. V. Ushkov, V. V. Grushin, J. Am. Chem. Soc. 2011, 133, 10999.

I. Kalvet, G. Magnin, F. Schoenebeck, Angew. Chem. Int. Ed. 2017, 56, 1581; Angew. Chem. 2017, 129, 1603;

R. Fisher, R. N. Haszeldine, A. E. Tipping, J. Fluorine Chem. 1983, 22, 155;

A. Linke, S. H. Jungbauer, S. M. Huber, S. R. Waldvogel, Chem. Commun. 2015, 51, 2040;

K. W. Bair, Patent WO 2014164767 A1, 2013;

Z. Huang, C. Wang, G. Dong, Angew. Chem. Int. Ed. 2016, 55, 5299; Angew. Chem. 2016, 128, 5385;

S. Zhou, J. Wang, L. Wang, K. Chen, C. Song, J. Zhu, Org. Lett. 2016, 18, 3806.

R. Stollé, J. Prakt. Chem. 1927, 116, 192;

X. Su, I. Aprahamian, Chem. Soc. Rev. 2014, 43, 1963;

F. López-Muñoz, C. Álamo, G. Juckel, H.-J. Assion, J. Clin. Psychopharmacol. 2007, 27, 555.

P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564;

R. E. Banks, M. S. Falou, A. E. Tipping, J. Fluorine Chem. 1988, 38, 279;

R. L. Sutar, S. M. Huber, ACS Catal. 2019, 9, 9622.

S. T. Keaveney, G. Kundu, F. Schoenebeck, Angew. Chem. Int. Ed. 2018, 57, 12573; Angew. Chem. 2018, 130, 12753;

R. Narang, B. Narasimhan, S. Sharma, Curr. Med. Chem. 2012, 19, 569;

C. Isanbor, D. O'Hagan, J. Fluorine Chem. 2006, 127, 303;

M. Mamone, E. Morvan, T. Milcent, S. Ongeri, B. Crousse, J. Org. Chem. 2015, 80, 1964.

T. Scattolin, K. Deckers, F. Schoenebeck, Angew. Chem. Int. Ed. 2017, 56, 221; Angew. Chem. 2017, 129, 227.

S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320;

M. Mendel, I. Kalvet, D. Hupperich, G. Magnin, F. Schoenebeck, Angew. Chem. Int. Ed. 2020, 59, 2115; Angew. Chem. 2020, 132, 2132.

A. Matoliukstyte, R. Lygaitis, J. V. Grazulevicius, V. Gaidelis, V. Jankauskas, E. Montrimas, Z. Tokarski, N. Jubran, Mol. Cryst. Liq. Cryst. 2005, 427, 107/[419].

D. K. Kölmel, E. T. Kool, Chem. Rev. 2017, 117, 10358;

I.-K. Park, S.-E. Suh, B.-Y. Lim, C.-G. Cho, Org. Lett. 2009, 11, 5454.

G. Verma, A. Marella, M. Shaquiquzzaman, M. Akhtar, M. Ali, M. Alam, J. Pharm. Bioall. Sci. 2014, 6, 69;

S. J. A. Graven, E. Jesper, F. Bastlund, Patent WO2012131031A1, 2012.

T. Milcent, B. Crousse, Comptes Rendus Chimie 2018, 21, 771;

B. W. Boal, A. W. Schammel, N. K. Garg, Org. Lett. 2009, 11, 3458;

T. Liang, C. N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013, 52, 8214; Angew. Chem. 2013, 125, 8372.

M. J. Frisch, et al., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT (2013);

I. Kalvet, T. Sperger, T. Scattolin, G. Magnin, F. Schoenebeck, Angew. Chem. Int. Ed. 2017, 56, 7078; Angew. Chem. 2017, 129, 7184;

structures were optimized with ωB97XD/6- 31G(d); for complete details see supporting information.

P. A. Champagne, J. Desroches, J.-D. Hamel, M. Vandamme, J.-F. Paquin, Chem. Rev. 2015, 115, 9073;

C. R. Reddy, B. Sridhar, B. V. Subba Reddy, ACS Omega 2018, 3, 9746;

For alkylation and arylations with PdI, see:

T. Scattolin, S. Bouayad-Gervais, F. Schoenebeck, Nature 2019, 573, 102.

 

C. Song, C. Yang, F. Zhang, J. Wang, J. Zhu, Org. Lett. 2016, 18, 4510;

I. F. Shishkov, H. J. Geise, C. Van Alsenoy, L. V. Khristenko, L. V. Vilkov, V. M. Senyavian, B. Van der Veken, W. Herrebout, B. V. Lokshin, O. G. Garkusha, J. Mol. Struct. 2001, 567–568, 339.

G. Newsholme, A. E. Tipping, J. Fluorine Chem. 1994, 68, 39;

L. E. Zimmer, C. Sparr, R. Gilmour, Angew. Chem. Int. Ed. 2011, 50, 11860; Angew. Chem. 2011, 123, 12062;

C. Zhao, K. P. Rakesh, L. Ravidar, W.-Y. Fang, H.-L. Qin, Eur. J. Med. Chem. 2019, 162, 679.

M. P. Elizalde-González, S. A. Lozano-Morales, Mater. Chem. Phys. 2019, 228, 15;

S. Zhou, J. Wang, F. Zhang, C. Song, J. Zhu, Org. Lett. 2016, 18, 2427;

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel