Welcome to the IKCEST

Advanced Science | Vol., Issue. | 2020-04-12 | Pages

Advanced Science

Ultrathin PEDOT:PSS Enables Colorful and Efficient Perovskite Light‐Emitting Diodes

Di Zhang   Chuanzhong Yan   Zhanhua Wei   Jiayun Sun   Kebin Lin   Wenjing Feng   Kai Wang   Guanding Mei   Jianxun Lu   Dan Wu  
Abstract

Recently, metal halide perovskite light‐emitting diodes (Pero‐LEDs) have achieved significant improvement in device performance, especially for external quantum efficiency (EQE). And EQE is mostly determined by internal quantum efficiency of the emitting material, charge injection balancing factor (ηc), and light extraction efficiency (LEE) of the device. Herein, an ultrathin poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (UT‐PEDOT:PSS) hole transporter layer is prepared by a water stripping method, and the UT‐PEDOT:PSS can enhance ηc and LEE simultaneously in Pero‐LEDs, mostly due to the improved carrier mobility, more matched energy level alignment, and reduced photon loss. More importantly, the performance enhancement from UT‐PEDOT:PSS is quite universal and applicable in different kinds of Pero‐LEDs. As a result, the EQEs of Pero‐LEDs based on 3D, quasi‐3D, and quasi‐2D perovskites obtain enhancements of 42%, 87%, and 111%, and the corresponding maximum EQE reaches 17.6%, 15.0%, and 6.8%, respectively.

Original Text (This is the original text for your reference.)

Ultrathin PEDOT:PSS Enables Colorful and Efficient Perovskite Light‐Emitting Diodes

Recently, metal halide perovskite light‐emitting diodes (Pero‐LEDs) have achieved significant improvement in device performance, especially for external quantum efficiency (EQE). And EQE is mostly determined by internal quantum efficiency of the emitting material, charge injection balancing factor (ηc), and light extraction efficiency (LEE) of the device. Herein, an ultrathin poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (UT‐PEDOT:PSS) hole transporter layer is prepared by a water stripping method, and the UT‐PEDOT:PSS can enhance ηc and LEE simultaneously in Pero‐LEDs, mostly due to the improved carrier mobility, more matched energy level alignment, and reduced photon loss. More importantly, the performance enhancement from UT‐PEDOT:PSS is quite universal and applicable in different kinds of Pero‐LEDs. As a result, the EQEs of Pero‐LEDs based on 3D, quasi‐3D, and quasi‐2D perovskites obtain enhancements of 42%, 87%, and 111%, and the corresponding maximum EQE reaches 17.6%, 15.0%, and 6.8%, respectively.

+More

Cite this article
APA

APA

MLA

Chicago

Di Zhang, Chuanzhong Yan, Zhanhua Wei, Jiayun Sun, Kebin Lin, Wenjing Feng, Kai Wang, Guanding Mei,Jianxun Lu, Dan Wu,.Ultrathin PEDOT:PSS Enables Colorful and Efficient Perovskite Light‐Emitting Diodes. (),.

References

R. Zhu, Z. Luo, S.‐T. Wu, Opt. Express 2014, 22, A1783.

B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna, F. Auras, J. M. Richter, L. Yang, L. Dai, M. Alsari, X.‐J. She, L. Liang, J. Zhang, S. Lilliu, P. Gao, H. J. Snaith, J. Wang, N. C. Greenham, R. H. Friend, D. Di, Nat. Photonics 2018, 12, 783.

L. N. Quan, F. P. G. de Arquer, R. P. Sabatini, E. H. Sargent, Adv. Mater. 2018, 30, 1801996.

H. Liang, R. Zhu, Y. Dong, S.‐T. Wu, J. Li, J. Wang, J. Zhou, Opt. Express 2015, 23, 12910.

M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.

S.‐H. Jeong, H. Kim, M.‐H. Park, Y. Lee, N. Li, H.‐K. Seo, T.‐H. Han, S. Ahn, J.‐M. Heo, K. S. Kim, T.‐W. Lee, Nano Energy 2019, 60, 324.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillips, R. H. Friend, J. Phys. Chem. Lett. 2014, 5, 1421.

Y. Meng, M. Ahmadi, X. Y. Wu, T. F. Xu, L. Xu, Z. H. Xiong, P. Chen, Org. Electron. 2019, 64, 47.

Z. Han, S. I. Bozhevolnyi, Rep. Prog. Phys. 2013, 76, 016402.

J. Burschka, N. Pellet, S.‐J. Moon, R. Humphry‐Baker, P. Gao, M. K. Nazeeruddin, M. Graetzel, Nature 2013, 499, 316.

Z. J. Wang, Z. R. Li, D. L. Zhou, J. S. Yu, Appl. Phys. Lett. 2017, 111, 233304.

K. Lin, J. Lu, L. Xie, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, Z. Wei, J. Xing, W. Zhao, Q. Xiong, L. N. Quan, A. F. P. G. de, X. Gong, J. Kirman, E. H. Sargent, Nature 2018, 562, 245.

M. Vosgueritchian, D. J. Lipomi, Z. Bao, Adv. Funct. Mater. 2012, 22, 421.

X. Huang, K. Wang, C. Yi, T. Meng, X. Gong, Adv. Energy Mater. 2016, 6, 1501773.

W. Zhang, B. Zhao, Z. He, X. Zhao, H. Wang, S. Yang, H. Wu, Y. Cao, Energy Environ. Sci. 2013, 6, 1956.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.

X. Zhao, Z.‐K. Tan, Nat. Photonics 2019, 13, https://doi.org/10.1038/s41566‐019‐0559‐3.

L. Hu, M. Li, K. Yang, Z. Xiong, B. Yang, M. Wang, X. Tang, Z. Zang, X. Liu, B. Li, Z. Xiao, S. Lu, H. Gong, J. Ouyang, K. Sun, J. Mater. Chem. A 2018, 6, 16583.

Y. Cao, N. Wang, Y. Wei, H. Chen, Y. Miao, W. Zou, K. Pan, Y. He, H. Cao, Y. Ke, M. Xu, Y. Wang, M. Yang, Z. Fu, D. Kong, G. Li, H. Li, Q. Peng, J. Wang, W. Huang, H. Tian, K. Du, J. Guo, D. Dai, Y. Jin, W. Huang, W. Huang, Nature 2018, 562, 249.

M. Wu, D. Zhao, Z. Wang, J. Yu, Nanoscale Res. Lett. 2018, 13, 128.

T. Fang, F. Zhang, S. Yuan, H. Zeng, J. Song, InfoMat 2019, 1, 211.

S. A. Rutledge, A. S. Helmy, J. Appl. Phys. 2013, 114, 133708.

D. B. Kim, J. C. Yu, Y. S. Nam, D. W. Kim, E. D. Jung, S. Y. Lee, S. Lee, J. H. Park, A.‐Y. Lee, B. R. Lee, D. Di Nuzzo, R. H. Friend, M. H. Song, J. Mater. Chem. C 2016, 4, 8161.

K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, Q. Gong, Adv. Mater. 2016, 28, 10718.

Z.‐K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol. 2014, 9, 687.

Z. Wei, J. Xing, J. Phys. Chem. Lett. 2019, 10, 3035.

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller‐Meskamp, K. Leo, Adv. Funct. Mater. 2011, 21, 1076.

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.‐W. Koh, G. D. Scholes, B. P. Rand, Nat. Photonics 2017, 11, 108.

Y.‐H. Kim, H. Cho, J. H. Heo, T.‐S. Kim, N. Myoung, C.‐L. Lee, S. H. Im, T.‐W. Lee, Adv. Mater. 2015, 27, 1248.

K. Y. Bliokh, F. J. Rodríguez‐Fortuño, F. Nori, A. V. Zayats, Nat. Photonics 2015, 9, 796.

A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.

T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.‐J. Pu, S. Ohisa, J. Kido, Nat. Photonics 2018, 12, 681.

H. Cho, S.‐H. Jeong, M.‐H. Park, Y.‐H. Kim, C. Wolf, C.‐L. Lee, N. Myoung, J. H. Heo, S. H. Im, A. Sadhanala, R. H. Friend, S. Yoo, T.‐W. Lee, Science 2015, 350, 1222.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel