Advanced Science | Vol., Issue. | 2020-04-12 | Pages
Ultrathin PEDOT:PSS Enables Colorful and Efficient Perovskite Light‐Emitting Diodes
Recently, metal halide perovskite light‐emitting diodes (Pero‐LEDs) have achieved significant improvement in device performance, especially for external quantum efficiency (EQE). And EQE is mostly determined by internal quantum efficiency of the emitting material, charge injection balancing factor (ηc), and light extraction efficiency (LEE) of the device. Herein, an ultrathin poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (UT‐PEDOT:PSS) hole transporter layer is prepared by a water stripping method, and the UT‐PEDOT:PSS can enhance ηc and LEE simultaneously in Pero‐LEDs, mostly due to the improved carrier mobility, more matched energy level alignment, and reduced photon loss. More importantly, the performance enhancement from UT‐PEDOT:PSS is quite universal and applicable in different kinds of Pero‐LEDs. As a result, the EQEs of Pero‐LEDs based on 3D, quasi‐3D, and quasi‐2D perovskites obtain enhancements of 42%, 87%, and 111%, and the corresponding maximum EQE reaches 17.6%, 15.0%, and 6.8%, respectively.
Original Text (This is the original text for your reference.)
Ultrathin PEDOT:PSS Enables Colorful and Efficient Perovskite Light‐Emitting Diodes
Recently, metal halide perovskite light‐emitting diodes (Pero‐LEDs) have achieved significant improvement in device performance, especially for external quantum efficiency (EQE). And EQE is mostly determined by internal quantum efficiency of the emitting material, charge injection balancing factor (ηc), and light extraction efficiency (LEE) of the device. Herein, an ultrathin poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (UT‐PEDOT:PSS) hole transporter layer is prepared by a water stripping method, and the UT‐PEDOT:PSS can enhance ηc and LEE simultaneously in Pero‐LEDs, mostly due to the improved carrier mobility, more matched energy level alignment, and reduced photon loss. More importantly, the performance enhancement from UT‐PEDOT:PSS is quite universal and applicable in different kinds of Pero‐LEDs. As a result, the EQEs of Pero‐LEDs based on 3D, quasi‐3D, and quasi‐2D perovskites obtain enhancements of 42%, 87%, and 111%, and the corresponding maximum EQE reaches 17.6%, 15.0%, and 6.8%, respectively.
+More
charge injection balancing factor external quantum efficiency quasi2d perovskites light extraction efficiency metal halide perovskite lightemitting diodes photon loss device performance internal quantum efficiency eqes c emitting stripping method peroleds 3d quasi3d carrier mobility poly34ethylenedioxythiophenepolystyrene sulfonate utpedotpss hole transporter
APA
MLA
Chicago
Di Zhang, Chuanzhong Yan, Zhanhua Wei, Jiayun Sun, Kebin Lin, Wenjing Feng, Kai Wang, Guanding Mei,Jianxun Lu, Dan Wu,.Ultrathin PEDOT:PSS Enables Colorful and Efficient Perovskite Light‐Emitting Diodes. (),.
R. Zhu, Z. Luo, S.‐T. Wu, Opt. Express 2014, 22, A1783.
B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna, F. Auras, J. M. Richter, L. Yang, L. Dai, M. Alsari, X.‐J. She, L. Liang, J. Zhang, S. Lilliu, P. Gao, H. J. Snaith, J. Wang, N. C. Greenham, R. H. Friend, D. Di, Nat. Photonics 2018, 12, 783.
L. N. Quan, F. P. G. de Arquer, R. P. Sabatini, E. H. Sargent, Adv. Mater. 2018, 30, 1801996.
H. Liang, R. Zhu, Y. Dong, S.‐T. Wu, J. Li, J. Wang, J. Zhou, Opt. Express 2015, 23, 12910.
M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
S.‐H. Jeong, H. Kim, M.‐H. Park, Y. Lee, N. Li, H.‐K. Seo, T.‐H. Han, S. Ahn, J.‐M. Heo, K. S. Kim, T.‐W. Lee, Nano Energy 2019, 60, 324.
F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillips, R. H. Friend, J. Phys. Chem. Lett. 2014, 5, 1421.
Y. Meng, M. Ahmadi, X. Y. Wu, T. F. Xu, L. Xu, Z. H. Xiong, P. Chen, Org. Electron. 2019, 64, 47.
Z. Han, S. I. Bozhevolnyi, Rep. Prog. Phys. 2013, 76, 016402.
J. Burschka, N. Pellet, S.‐J. Moon, R. Humphry‐Baker, P. Gao, M. K. Nazeeruddin, M. Graetzel, Nature 2013, 499, 316.
Z. J. Wang, Z. R. Li, D. L. Zhou, J. S. Yu, Appl. Phys. Lett. 2017, 111, 233304.
K. Lin, J. Lu, L. Xie, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, Z. Wei, J. Xing, W. Zhao, Q. Xiong, L. N. Quan, A. F. P. G. de, X. Gong, J. Kirman, E. H. Sargent, Nature 2018, 562, 245.
M. Vosgueritchian, D. J. Lipomi, Z. Bao, Adv. Funct. Mater. 2012, 22, 421.
X. Huang, K. Wang, C. Yi, T. Meng, X. Gong, Adv. Energy Mater. 2016, 6, 1501773.
W. Zhang, B. Zhao, Z. He, X. Zhao, H. Wang, S. Yang, H. Wu, Y. Cao, Energy Environ. Sci. 2013, 6, 1956.
M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
X. Zhao, Z.‐K. Tan, Nat. Photonics 2019, 13, https://doi.org/10.1038/s41566‐019‐0559‐3.
L. Hu, M. Li, K. Yang, Z. Xiong, B. Yang, M. Wang, X. Tang, Z. Zang, X. Liu, B. Li, Z. Xiao, S. Lu, H. Gong, J. Ouyang, K. Sun, J. Mater. Chem. A 2018, 6, 16583.
Y. Cao, N. Wang, Y. Wei, H. Chen, Y. Miao, W. Zou, K. Pan, Y. He, H. Cao, Y. Ke, M. Xu, Y. Wang, M. Yang, Z. Fu, D. Kong, G. Li, H. Li, Q. Peng, J. Wang, W. Huang, H. Tian, K. Du, J. Guo, D. Dai, Y. Jin, W. Huang, W. Huang, Nature 2018, 562, 249.
M. Wu, D. Zhao, Z. Wang, J. Yu, Nanoscale Res. Lett. 2018, 13, 128.
T. Fang, F. Zhang, S. Yuan, H. Zeng, J. Song, InfoMat 2019, 1, 211.
S. A. Rutledge, A. S. Helmy, J. Appl. Phys. 2013, 114, 133708.
D. B. Kim, J. C. Yu, Y. S. Nam, D. W. Kim, E. D. Jung, S. Y. Lee, S. Lee, J. H. Park, A.‐Y. Lee, B. R. Lee, D. Di Nuzzo, R. H. Friend, M. H. Song, J. Mater. Chem. C 2016, 4, 8161.
K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu, Q. Gong, Adv. Mater. 2016, 28, 10718.
Z.‐K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol. 2014, 9, 687.
Z. Wei, J. Xing, J. Phys. Chem. Lett. 2019, 10, 3035.
Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller‐Meskamp, K. Leo, Adv. Funct. Mater. 2011, 21, 1076.
Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.‐W. Koh, G. D. Scholes, B. P. Rand, Nat. Photonics 2017, 11, 108.
Y.‐H. Kim, H. Cho, J. H. Heo, T.‐S. Kim, N. Myoung, C.‐L. Lee, S. H. Im, T.‐W. Lee, Adv. Mater. 2015, 27, 1248.
K. Y. Bliokh, F. J. Rodríguez‐Fortuño, F. Nori, A. V. Zayats, Nat. Photonics 2015, 9, 796.
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.‐J. Pu, S. Ohisa, J. Kido, Nat. Photonics 2018, 12, 681.
H. Cho, S.‐H. Jeong, M.‐H. Park, Y.‐H. Kim, C. Wolf, C.‐L. Lee, N. Myoung, J. H. Heo, S. H. Im, A. Sadhanala, R. H. Friend, S. Yoo, T.‐W. Lee, Science 2015, 350, 1222.
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: