Welcome to the IKCEST

Flow Measurement and Instrumentation | Vol.72, Issue. | 2020-03-31 | Pages 101721

Flow Measurement and Instrumentation

A benchmark data set for two-phase Coriolis metering

Vyacheslav V. Barabanov   Manus P. Henry   Olga L. Ibryaeva   Michael Tombs   Feibiao Zhou  
Abstract

For more than a decade there has been growing interest in the use of Coriolis mass flow metering applied to two-phase (gas/liquid) and multiphase (oil/water/gas) conditions. It is well-established that the mass flow and density measurements generated from multiphase flows are subject to large errors, and a variety of physical models and correction techniques have been proposed to explain and/or to compensate for these errors. One difficulty is the absence of a common basis for comparing correction techniques, because different flowtube designs and configurations, as well as liquid and gas properties, may result in quite different error curves. Furthermore, some researchers with interests in the modelling aspects of the field may not have suitable multiphase laboratory facilities to generate their own data sets. This paper offers a small data set that may be used by researchers as a benchmark i.e. a common data set for comparing correction techniques. The data set was collected at the UK National Flow Laboratory TUV-NEL, using air and a viscous oil, and provides experimental points over a wide flow range (8:1 turndown) and with Gas Volume Fraction (GVF) values up to 60%. As a first investigation using the benchmark data set, we consider how data sparsity (i.e. the flow rate and GVF spacing in the experimental grid) affects the accuracy of a correction model. A range of neural network models are evaluated, based on different subsets of the benchmark data set. The data set and some exemplary code are provided with the paper. Additional data sets are available on a web site created to support this initiative.

Original Text (This is the original text for your reference.)

A benchmark data set for two-phase Coriolis metering

For more than a decade there has been growing interest in the use of Coriolis mass flow metering applied to two-phase (gas/liquid) and multiphase (oil/water/gas) conditions. It is well-established that the mass flow and density measurements generated from multiphase flows are subject to large errors, and a variety of physical models and correction techniques have been proposed to explain and/or to compensate for these errors. One difficulty is the absence of a common basis for comparing correction techniques, because different flowtube designs and configurations, as well as liquid and gas properties, may result in quite different error curves. Furthermore, some researchers with interests in the modelling aspects of the field may not have suitable multiphase laboratory facilities to generate their own data sets. This paper offers a small data set that may be used by researchers as a benchmark i.e. a common data set for comparing correction techniques. The data set was collected at the UK National Flow Laboratory TUV-NEL, using air and a viscous oil, and provides experimental points over a wide flow range (8:1 turndown) and with Gas Volume Fraction (GVF) values up to 60%. As a first investigation using the benchmark data set, we consider how data sparsity (i.e. the flow rate and GVF spacing in the experimental grid) affects the accuracy of a correction model. A range of neural network models are evaluated, based on different subsets of the benchmark data set. The data set and some exemplary code are provided with the paper. Additional data sets are available on a web site created to support this initiative.

+More

Cite this article
APA

APA

MLA

Chicago

Vyacheslav V. Barabanov, Manus P. Henry,Olga L. Ibryaeva, Michael Tombs, Feibiao Zhou,.A benchmark data set for two-phase Coriolis metering. 72 (),101721.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel