Robotics and Computer-Integrated Manufacturing | Vol.54, Issue.0 | | Pages
Preshaping input trajectories of industrial robots for vibration suppression
This paper presents several novel methods that improve the current input shaping techniques for vibration suppression for multi-degree of freedom industrial robots. Three different techniques, namely, the optimal S-curve trajectory, the robust zero-vibration shaper, and the dynamic zero-vibration shaper, are proposed. These methods can suppress multiple vibration modes of a flexible joint robot under a computed torque control based on a rigid model. The time delays for each method are quantified and compared. The optimal S-curve trajectory finds the maximum jerk to obtain the minimum vibration. The robust zero-vibration shaper can suppress multiple modes without an accurate model. The delay of the dynamic zero-vibration shaper is smaller than the existing input shaping techniques. Our analysis is verified both by simulation and experiment with a six degrees-of-freedom commercial industrial robot.
Original Text (This is the original text for your reference.)
Preshaping input trajectories of industrial robots for vibration suppression
This paper presents several novel methods that improve the current input shaping techniques for vibration suppression for multi-degree of freedom industrial robots. Three different techniques, namely, the optimal S-curve trajectory, the robust zero-vibration shaper, and the dynamic zero-vibration shaper, are proposed. These methods can suppress multiple vibration modes of a flexible joint robot under a computed torque control based on a rigid model. The time delays for each method are quantified and compared. The optimal S-curve trajectory finds the maximum jerk to obtain the minimum vibration. The robust zero-vibration shaper can suppress multiple modes without an accurate model. The delay of the dynamic zero-vibration shaper is smaller than the existing input shaping techniques. Our analysis is verified both by simulation and experiment with a six degrees-of-freedom commercial industrial robot.
+More
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: