Marine Structures | Vol.59, Issue.0 | | Pages
Review of experiments and calculation procedures for ship collision and grounding damage
The paper presents a review of experiments and calculation procedures for the resistances of ship structural components subjected to impact loadings. The purpose of the paper is to highlight the importance of large-scale collision and grounding experiments and to discuss the technical difficulties and challenges in analytical, empirical and numerical analyses. Experiments on ship structural components are benchmarks and baselines, used to propose analytical or empirical formulae for the structural energy absorptions and/or to validate numerical analyses considering the actual structural and material characteristics. In recent literature, analytical and numerical calculations provide relatively accurate prediction of the purely plastic responses of ship structures under impact loads, but universal approaches have not been found for fracture predictions. The existing formulae for failure criteria still show limitations when evaluating material fracture in various damage patterns. Recently, semi-analytical approaches have been developed to evaluate the relationship between the absorbed energy and the damaged material volume, taking into account the structural arrangements. It seems that these semi-analytical methods often show better accuracy than the numerical simulations when predicting the experimental results.
Original Text (This is the original text for your reference.)
Review of experiments and calculation procedures for ship collision and grounding damage
The paper presents a review of experiments and calculation procedures for the resistances of ship structural components subjected to impact loadings. The purpose of the paper is to highlight the importance of large-scale collision and grounding experiments and to discuss the technical difficulties and challenges in analytical, empirical and numerical analyses. Experiments on ship structural components are benchmarks and baselines, used to propose analytical or empirical formulae for the structural energy absorptions and/or to validate numerical analyses considering the actual structural and material characteristics. In recent literature, analytical and numerical calculations provide relatively accurate prediction of the purely plastic responses of ship structures under impact loads, but universal approaches have not been found for fracture predictions. The existing formulae for failure criteria still show limitations when evaluating material fracture in various damage patterns. Recently, semi-analytical approaches have been developed to evaluate the relationship between the absorbed energy and the damaged material volume, taking into account the structural arrangements. It seems that these semi-analytical methods often show better accuracy than the numerical simulations when predicting the experimental results.
+More
impact grounding empirical formulae material fracture failure criteria calculation procedures purely plastic responses of ship structures semianalytical approaches resistances of ship structural components structural energy absorptions experimental results collision damage patterns numerical calculations
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: