Welcome to the IKCEST

Knowledge-Based Systems | Vol., Issue. | | Pages

Knowledge-Based Systems

Dual Channel LSTM Based Multi-feature Extraction in Gait for Diagnosis of Neurodegenerative Diseases

Lin Qi   Aite Zhao   Junyu Dong   Hui Yu  
Abstract

The performance of gait disturbances differ in various Neurodegenerative diseases (NDs), which is an important basis for the diagnosis of NDs. In the diagnosis, doctors can judge disease state by observing patients’ gait features without quantification, such a subjective diagnosis has been seen as a problem because diagnostic results may differ among doctors. Moreover, there are some irresistible factors such as fatigue may effects diagnostic procedure. To make use of these observations, we build an automatic deep model based on Long Short-Term Memory (LSTM) for the gait recognition problem. In our model, a dual channel LSTM model is designed to combine time series and force series recorded from NDs patients for whole gait understanding. Experimental results demonstrate that our proposed model improves gait recognition performance compared to baseline methods. We believe the quantitative evaluation provided by our method will assist clinical diagnosis of Neurodegenerative diseases.

Original Text (This is the original text for your reference.)

Dual Channel LSTM Based Multi-feature Extraction in Gait for Diagnosis of Neurodegenerative Diseases

The performance of gait disturbances differ in various Neurodegenerative diseases (NDs), which is an important basis for the diagnosis of NDs. In the diagnosis, doctors can judge disease state by observing patients’ gait features without quantification, such a subjective diagnosis has been seen as a problem because diagnostic results may differ among doctors. Moreover, there are some irresistible factors such as fatigue may effects diagnostic procedure. To make use of these observations, we build an automatic deep model based on Long Short-Term Memory (LSTM) for the gait recognition problem. In our model, a dual channel LSTM model is designed to combine time series and force series recorded from NDs patients for whole gait understanding. Experimental results demonstrate that our proposed model improves gait recognition performance compared to baseline methods. We believe the quantitative evaluation provided by our method will assist clinical diagnosis of Neurodegenerative diseases.

+More

Cite this article
APA

APA

MLA

Chicago

Lin Qi,Aite Zhao, Junyu Dong, Hui Yu,.Dual Channel LSTM Based Multi-feature Extraction in Gait for Diagnosis of Neurodegenerative Diseases. (),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel