Welcome to the IKCEST

Fire and Materials | Vol.42, Issue.1 | | Pages 27-18

Fire and Materials

Fire performance of brominated and halogen-free flame retardants in glass-fiber reinforced poly(butylene terephthalate)

M. Suzanne   A. Ramani   S. Ukleja   J. Zhang   M.A. Delichatsios   P. Patel   M. McKee   P. Clarke   P. Cusack  
Abstract

This paper investigates the effects of brominated and halogen-free fire retardants on the fire performance of glass-fiber (GF) reinforced poly(butylene terephthalate) (PBT). Brominated polystyrene was used as the brominated fire retardant, whereas aluminum diethylphosphinate with/without nanoclay as halogen-free fire retardants (HFFRs). Tests were conducted by using thermogravimetric analysis, limiting oxygen index (LOI), UL94, and the cone calorimeter. Thermogravimetric analysis results show that decomposition of GF plus PBT (PBT + GF) starts earlier in the presence of all fire retardants (FRs). In the cone calorimeter, all FRs reduce significantly the heat release rate (HRR) compared with PBT + GF, with brominated polystyrene achieving lowest HRR primarily because bromine released in the pyrolysis gases inhibits combustion. Brominate polystyrene does not, however, affect the mass loss rate. Aluminum diethylphosphinate alone has significant effects on reduction of both HRR and mass loss rate, which become considerably more when combined with nanoclay. It was also found that the combustion efficiency of the brominated polystyrene compound is much lower than that of HFFRs, indicating that brominated polystyrene has higher gas phase flame retardant efficiency compared with HFFRs because the bromine radicals released during degradation of brominated polystyrene effectively quench the chemical reactions of the pyrolysis gases due to degradation of PBT.

Original Text (This is the original text for your reference.)

Fire performance of brominated and halogen-free flame retardants in glass-fiber reinforced poly(butylene terephthalate)

This paper investigates the effects of brominated and halogen-free fire retardants on the fire performance of glass-fiber (GF) reinforced poly(butylene terephthalate) (PBT). Brominated polystyrene was used as the brominated fire retardant, whereas aluminum diethylphosphinate with/without nanoclay as halogen-free fire retardants (HFFRs). Tests were conducted by using thermogravimetric analysis, limiting oxygen index (LOI), UL94, and the cone calorimeter. Thermogravimetric analysis results show that decomposition of GF plus PBT (PBT + GF) starts earlier in the presence of all fire retardants (FRs). In the cone calorimeter, all FRs reduce significantly the heat release rate (HRR) compared with PBT + GF, with brominated polystyrene achieving lowest HRR primarily because bromine released in the pyrolysis gases inhibits combustion. Brominate polystyrene does not, however, affect the mass loss rate. Aluminum diethylphosphinate alone has significant effects on reduction of both HRR and mass loss rate, which become considerably more when combined with nanoclay. It was also found that the combustion efficiency of the brominated polystyrene compound is much lower than that of HFFRs, indicating that brominated polystyrene has higher gas phase flame retardant efficiency compared with HFFRs because the bromine radicals released during degradation of brominated polystyrene effectively quench the chemical reactions of the pyrolysis gases due to degradation of PBT.

+More

Cite this article
APA

APA

MLA

Chicago

M. Suzanne, A. Ramani, S. Ukleja, J. Zhang, M.A. Delichatsios, P. Patel, M. McKee, P. Clarke, P. Cusack,.Fire performance of brominated and halogen-free flame retardants in glass-fiber reinforced poly(butylene terephthalate). 42 (1),27-18.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel