Welcome to the IKCEST

Water Resources Management | Vol.31, Issue.15 | | Pages 4891–4908

Water Resources Management

Gene-Expression Programming for Short-Term Forecasting of Daily Reference Evapotranspiration Using Public Weather Forecast Information

Yufeng Luo   Seydou Traore   Guy Fipps  
Abstract

This study aimed to forecast the daily reference evapotranspiration (ETo) using a gene-expression programming (GEP) algorithm with limited public weather forecast information over Gaoyou station, located in Jiangsu province, China. To calibrate and validate the gene-expression code, important meteorological data and weather forecast information were collected from the local meteorological station and public weather media, respectively. The GEP algebraic formulation was successfully constructed based only on daily minimum and maximum air temperature using the true FAO56 Penman-Monteith (PM) set as reference values. The performance of the models was then assessed using the correlation coefficient (R), root mean squared error (RMSE), root relative squared error (RRSE) and mean absolute error (MAE). The study demonstrated that GEP is able to calibrate ETo (all errors ≤0.990 mm/day, R = 0.832–0.866) and forecast the daily ETo with good accuracy (RMSE = 1.207 mm/day, MAE = 0.902 mm/day, RRSE = 0.629 mm/day, R = 0.777). The model accuracies slightly decreased over a 7-day forecast lead-time. These results suggest that the GEP algorithm can be considered as a deployable tool for ETo forecast to anticipate decision on short-term irrigation schedule in the study zone.

Original Text (This is the original text for your reference.)

Gene-Expression Programming for Short-Term Forecasting of Daily Reference Evapotranspiration Using Public Weather Forecast Information

This study aimed to forecast the daily reference evapotranspiration (ETo) using a gene-expression programming (GEP) algorithm with limited public weather forecast information over Gaoyou station, located in Jiangsu province, China. To calibrate and validate the gene-expression code, important meteorological data and weather forecast information were collected from the local meteorological station and public weather media, respectively. The GEP algebraic formulation was successfully constructed based only on daily minimum and maximum air temperature using the true FAO56 Penman-Monteith (PM) set as reference values. The performance of the models was then assessed using the correlation coefficient (R), root mean squared error (RMSE), root relative squared error (RRSE) and mean absolute error (MAE). The study demonstrated that GEP is able to calibrate ETo (all errors ≤0.990 mm/day, R = 0.832–0.866) and forecast the daily ETo with good accuracy (RMSE = 1.207 mm/day, MAE = 0.902 mm/day, RRSE = 0.629 mm/day, R = 0.777). The model accuracies slightly decreased over a 7-day forecast lead-time. These results suggest that the GEP algorithm can be considered as a deployable tool for ETo forecast to anticipate decision on short-term irrigation schedule in the study zone.

+More

Cite this article
APA

APA

MLA

Chicago

Yufeng Luo,Seydou Traore,Guy Fipps,.Gene-Expression Programming for Short-Term Forecasting of Daily Reference Evapotranspiration Using Public Weather Forecast Information. 31 (15),4891–4908.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel