Welcome to the IKCEST

Scanning | Vol.34, Issue.3 | | Pages 151-8

Scanning

Mechanical and micromorphological evaluation of chlorhexidine-mediated dentin remineralization.

Duck-Su, Kim Jeong-Mee, Kwon Sang-Hyuk, Park Sung Chul, Choi Sun-Young, Kim  
Abstract

Chlorhexidine (CHX) has been reported to reduce self-degradation of collagen fibrils by inhibiting host-derived protease activity in demineralized dentin. Theoretically, if the collagen fibril scaffold of demineralized dentin maintains its original crosslinkage pattern on treatment with CHX and appropriate supplementation with necessary mineral sources, dentin remineralization may occur in demineralized lesions. In this study, we provide direct mechanical and micromorphological evidence for the ability of CHX to promote remineralization of demineralized dentin. Specifically, with respect to demineralized dentin blocks treated with different concentrations of CHX (0.02-2%) and stored in simulated body fluid, we have observed a significant increase in the elastic modulus of dentin treated with relatively high concentrations of CHX (0.2 and 2%) as storage time increased, whereas the elastic modulus of the non-CHX treated control group decreased. We have also observed a dense mineral deposition along collagen fibrils in the dentin group treated with 0.2 and 2% CHX via field emission scanning electron microscopy.

Original Text (This is the original text for your reference.)

Mechanical and micromorphological evaluation of chlorhexidine-mediated dentin remineralization.

Chlorhexidine (CHX) has been reported to reduce self-degradation of collagen fibrils by inhibiting host-derived protease activity in demineralized dentin. Theoretically, if the collagen fibril scaffold of demineralized dentin maintains its original crosslinkage pattern on treatment with CHX and appropriate supplementation with necessary mineral sources, dentin remineralization may occur in demineralized lesions. In this study, we provide direct mechanical and micromorphological evidence for the ability of CHX to promote remineralization of demineralized dentin. Specifically, with respect to demineralized dentin blocks treated with different concentrations of CHX (0.02-2%) and stored in simulated body fluid, we have observed a significant increase in the elastic modulus of dentin treated with relatively high concentrations of CHX (0.2 and 2%) as storage time increased, whereas the elastic modulus of the non-CHX treated control group decreased. We have also observed a dense mineral deposition along collagen fibrils in the dentin group treated with 0.2 and 2% CHX via field emission scanning electron microscopy.

+More

Cite this article
APA

APA

MLA

Chicago

Duck-Su, Kim Jeong-Mee, Kwon Sang-Hyuk, Park Sung Chul, Choi Sun-Young, Kim,.Mechanical and micromorphological evaluation of chlorhexidine-mediated dentin remineralization.. 34 (3),151-8.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel