Welcome to the IKCEST

Computers & Structures | Vol.192, Issue.0 | | Pages

Computers & Structures

Multiphase topology optimization of lattice injection molds

Kai Liu   Tong Wu   Andres Tovar  
Abstract

This work presents a topology optimization approach for lattice structures subjected to thermal and mechanical loads. The focus of this work is the design of injection molds. The proposed approach seeks to minimize the injection mold mass while satisfying constraints on mechanical and thermal performance. The optimal injection molds are characterized by a quasi-periodic distribution of lattice unit cells of variable relative density. The resulting lattice structures are suitable for additive manufacturing. The proposed structural optimization approach uses thermal and mechanical finite element analyses at two length scales: mesoscale and macroscale. At the mesoscale, lattice unit cells are utilized to obtain homogenized thermal and mechanical properties as a function of the lattice relative density. At the macroscale, the lattice unit cells are optimally distributed using the homogenized properties. The proposed design approach is demonstrated through 2D and 3D examples including the optimal design of an injection mold. The optimized injection mold is prototyped using additive manufacturing. The numerical model of the optimized mold shows that, with respect to a traditional solid mold design, a mass reduction of over 30% can be achieved with a small increase in nodal displacement (under 5 microns) and no difference in nodal temperature.

Original Text (This is the original text for your reference.)

Multiphase topology optimization of lattice injection molds

This work presents a topology optimization approach for lattice structures subjected to thermal and mechanical loads. The focus of this work is the design of injection molds. The proposed approach seeks to minimize the injection mold mass while satisfying constraints on mechanical and thermal performance. The optimal injection molds are characterized by a quasi-periodic distribution of lattice unit cells of variable relative density. The resulting lattice structures are suitable for additive manufacturing. The proposed structural optimization approach uses thermal and mechanical finite element analyses at two length scales: mesoscale and macroscale. At the mesoscale, lattice unit cells are utilized to obtain homogenized thermal and mechanical properties as a function of the lattice relative density. At the macroscale, the lattice unit cells are optimally distributed using the homogenized properties. The proposed design approach is demonstrated through 2D and 3D examples including the optimal design of an injection mold. The optimized injection mold is prototyped using additive manufacturing. The numerical model of the optimized mold shows that, with respect to a traditional solid mold design, a mass reduction of over 30% can be achieved with a small increase in nodal displacement (under 5 microns) and no difference in nodal temperature.

+More

Cite this article
APA

APA

MLA

Chicago

Kai Liu,Tong Wu, Andres Tovar,.Multiphase topology optimization of lattice injection molds. 192 (0),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel