Welcome to the IKCEST

Advanced Materials | Vol.29, Issue.20 | | Pages

Advanced Materials

Heterojunction Photocatalysts

Mietek Jaroniec   Jingxiang Low   Jiaguo Yu   Swelm Wageh   Ahmed A. Al-Ghamdi  
Abstract

Semiconductor-based photocatalysis attracts wide attention because of its ability to directly utilize solar energy for production of solar fuels, such as hydrogen and hydrocarbon fuels and for degradation of various pollutants. However, the efficiency of photocatalytic reactions remains low due to the fast electron–hole recombination and low light utilization. Therefore, enormous efforts have been undertaken to solve these problems. Particularly, properly engineered heterojunction photocatalysts are shown to be able to possess higher photocatalytic activity because of spatial separation of photogenerated electron–hole pairs. Here, the basic principles of various heterojunction photocatalysts are systematically discussed. Recent efforts toward the development of heterojunction photocatalysts for various photocatalytic applications are also presented and appraised. Finally, a brief summary and perspectives on the challenges and future directions in the area of heterojunction photocatalysts are also provided. Heterojunction photocatalysts attract a lot of attention because of their effectiveness for spatial separation of photogenerated electron–hole pairs. Therefore, various types of heterojunction photocatalyst are applied in different photocatalytic fields, including H2 production, CO2 reduction, and pollutant degradation. The development of heterojunction photocatalysts can lead to significant advancements in the photocatalysis field.

Original Text (This is the original text for your reference.)

Heterojunction Photocatalysts

Semiconductor-based photocatalysis attracts wide attention because of its ability to directly utilize solar energy for production of solar fuels, such as hydrogen and hydrocarbon fuels and for degradation of various pollutants. However, the efficiency of photocatalytic reactions remains low due to the fast electron–hole recombination and low light utilization. Therefore, enormous efforts have been undertaken to solve these problems. Particularly, properly engineered heterojunction photocatalysts are shown to be able to possess higher photocatalytic activity because of spatial separation of photogenerated electron–hole pairs. Here, the basic principles of various heterojunction photocatalysts are systematically discussed. Recent efforts toward the development of heterojunction photocatalysts for various photocatalytic applications are also presented and appraised. Finally, a brief summary and perspectives on the challenges and future directions in the area of heterojunction photocatalysts are also provided. Heterojunction photocatalysts attract a lot of attention because of their effectiveness for spatial separation of photogenerated electron–hole pairs. Therefore, various types of heterojunction photocatalyst are applied in different photocatalytic fields, including H2 production, CO2 reduction, and pollutant degradation. The development of heterojunction photocatalysts can lead to significant advancements in the photocatalysis field.

+More

Cite this article
APA

APA

MLA

Chicago

Mietek Jaroniec,Jingxiang Low, Jiaguo Yu, Swelm Wageh, Ahmed A. Al-Ghamdi,.Heterojunction Photocatalysts. 29 (20),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel