IEEE Transactions on Circuits and Systems for Video Technology | Vol.32, Issue.9 | | Pages 6267-6278
Target-Distractor Aware Deep Tracking With Discriminative Enhancement Learning Loss
Numerous tracking approaches attempt to improve target representation through target-aware or distractor-aware. However, the unbalanced considerations of target or distractor information make it diffcult for these methods to benefit from the two aspects at the same time. In this paper, we propose a target-distractor aware model with discriminative enhancement learning loss to learn target representation, which can better distinguish the target in complex scenes. Firstly, to enlarge the gap between the target and distractor, we design a discriminative enhancement learning loss. By highlighting the hard negatives that are similar to the target and shrinking the easy negatives that are pure background, the features sensitive to the target or distractor representation can be more conveniently mined. On this basis, we further propose a target-distractor aware model. Unlike existing methods of preference target or distractor, we construct the target-specific feature space by activating the target-sensitive and the distractor-silence feature. Therefore, the appearance model can not only represent the target well but also suppress the background distractor. Finally, the target-distractor aware target representation model is integrated with a Siamese matching network for visual tracking for achieving robust and realtime visual tracking. Extensive experiments are performed on eight tracking benchmarks show that the proposed algorithm achieves favorable performance.
Original Text (This is the original text for your reference.)
Target-Distractor Aware Deep Tracking With Discriminative Enhancement Learning Loss
Numerous tracking approaches attempt to improve target representation through target-aware or distractor-aware. However, the unbalanced considerations of target or distractor information make it diffcult for these methods to benefit from the two aspects at the same time. In this paper, we propose a target-distractor aware model with discriminative enhancement learning loss to learn target representation, which can better distinguish the target in complex scenes. Firstly, to enlarge the gap between the target and distractor, we design a discriminative enhancement learning loss. By highlighting the hard negatives that are similar to the target and shrinking the easy negatives that are pure background, the features sensitive to the target or distractor representation can be more conveniently mined. On this basis, we further propose a target-distractor aware model. Unlike existing methods of preference target or distractor, we construct the target-specific feature space by activating the target-sensitive and the distractor-silence feature. Therefore, the appearance model can not only represent the target well but also suppress the background distractor. Finally, the target-distractor aware target representation model is integrated with a Siamese matching network for visual tracking for achieving robust and realtime visual tracking. Extensive experiments are performed on eight tracking benchmarks show that the proposed algorithm achieves favorable performance.
+More
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: